IndoBERT-Sentiment-Analysis8

This model is a fine-tuned version of indobenchmark/indobert-base-p1 on the None dataset. It achieves the following results on the evaluation set:

  • Loss: 0.4330
  • Accuracy: 0.9064
  • F1 Score: 0.9059

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 1e-05
  • train_batch_size: 6
  • eval_batch_size: 6
  • seed: 42
  • optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: linear
  • num_epochs: 2

Training results

Training Loss Epoch Step Validation Loss Accuracy F1 Score
0.6056 0.1096 50 0.6327 0.6436 0.6427
0.6022 0.2193 100 0.5972 0.6833 0.6710
0.5756 0.3289 150 0.5110 0.7718 0.7700
0.5413 0.4386 200 0.4315 0.8167 0.8165
0.4163 0.5482 250 0.3902 0.8397 0.8397
0.4568 0.6579 300 0.3597 0.8641 0.8640
0.3528 0.7675 350 0.4340 0.8321 0.8293
0.323 0.8772 400 0.3802 0.8692 0.8690
0.3351 0.9868 450 0.5919 0.8218 0.8174
0.2837 1.0965 500 0.4075 0.8808 0.8806
0.2194 1.2061 550 0.5113 0.8718 0.8708
0.2854 1.3158 600 0.5251 0.8692 0.8679
0.2385 1.4254 650 0.4456 0.8987 0.8982
0.3028 1.5351 700 0.4148 0.9038 0.9034
0.2995 1.6447 750 0.4003 0.9103 0.9099
0.1416 1.7544 800 0.4460 0.8987 0.8982
0.2767 1.8640 850 0.4192 0.9064 0.9059
0.236 1.9737 900 0.4316 0.9064 0.9059

Framework versions

  • Transformers 4.53.2
  • Pytorch 2.6.0+cu124
  • Datasets 2.14.4
  • Tokenizers 0.21.2
Downloads last month
-
Safetensors
Model size
0.1B params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for wildansofhal/IndoBERT-Sentiment-Analysis8

Finetuned
(103)
this model