--- license: llama3 base_model: yueliu1999/GuardReasoner-8B tags: - llama - safety - content-moderation - 4-bit - bitsandbytes - quantized library_name: transformers pipeline_tag: text-generation --- # GuardReasoner-8B (4-bit Quantized) Pre-quantized 4-bit version of [yueliu1999/GuardReasoner-8B](https://huggingface.co/yueliu1999/GuardReasoner-8B) for efficient inference. ## Model Description GuardReasoner-8B is a reasoning-based LLM safeguard that provides step-by-step analysis for content safety classification. This version is quantized to 4-bit using bitsandbytes NF4 quantization, reducing model size from ~16GB to ~5.4GB while maintaining performance. **Paper**: [GuardReasoner: Towards Reasoning-based LLM Safeguards](https://arxiv.org/abs/2501.18492) ## Usage ```python from transformers import AutoTokenizer, AutoModelForCausalLM model_id = "vincentoh/guardreasoner-8b-4bit" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained( model_id, device_map="auto", trust_remote_code=True, ) # Build prompt text = "What is the capital of France?" prompt = f"""<|begin_of_text|><|start_header_id|>system<|end_header_id|> You are a content safety expert. Analyze the request and determine if it is safe or harmful. Think step-by-step: 1. What is being requested? 2. What are the potential harms? 3. Does this violate safety policies? End your analysis with exactly: "Request: harmful" or "Request: unharmful".<|eot_id|><|start_header_id|>user<|end_header_id|> {text}<|eot_id|><|start_header_id|>assistant<|end_header_id|> """ inputs = tokenizer(prompt, return_tensors="pt").to(model.device) outputs = model.generate(**inputs, max_new_tokens=256, do_sample=False) response = tokenizer.decode(outputs[0][inputs["input_ids"].shape[1]:], skip_special_tokens=True) print(response) ``` ## Quantization Details - **Method**: bitsandbytes 4-bit NF4 - **Compute dtype**: float16 - **Double quantization**: enabled - **Original size**: ~16GB - **Quantized size**: ~5.4GB ## Performance Expected ~84% F1 on safety benchmarks (same as original model). ## License This model inherits the Llama 3 license from the base model. ## Citation ```bibtex @article{liu2025guardreasoner, title={GuardReasoner: Towards Reasoning-based LLM Safeguards}, author={Liu, Yue and others}, journal={arXiv preprint arXiv:2501.18492}, year={2025} } ```