---
tags:
- unsloth
base_model:
- Qwen/Qwen3-VL-8B-Thinking-FP8
license: apache-2.0
pipeline_tag: image-text-to-text
---
> [!NOTE]
> Includes Unsloth **chat template fixes**!
For `llama.cpp`, use `--jinja`
>
Unsloth Dynamic 2.0 achieves superior accuracy & outperforms other leading quants.
1. **Interleaved-MRoPE**: Full‑frequency allocation over time, width, and height via robust positional embeddings, enhancing long‑horizon video reasoning. 2. **DeepStack**: Fuses multi‑level ViT features to capture fine‑grained details and sharpen image–text alignment. 3. **Text–Timestamp Alignment:** Moves beyond T‑RoPE to precise, timestamp‑grounded event localization for stronger video temporal modeling. This is the weight repository for Qwen3-VL-8B-Thinking-FP8. --- ## Model Performance **Multimodal performance**  **Pure text performance**  ## Quickstart Currently, 🤗 Transformers does not support loading these weights directly. Stay tuned! We recommend deploying the model using vLLM or SGLang, with example launch commands provided below. For details on the runtime environment and deployment, please refer to this [link](https://github.com/QwenLM/Qwen3-VL?tab=readme-ov-file#deployment). ### vLLM Inference Here we provide a code snippet demonstrating how to use vLLM to run inference with Qwen3-VL locally. For more details on efficient deployment with vLLM, please refer to the [community deployment guide](https://docs.vllm.ai/projects/recipes/en/latest/Qwen/Qwen3-VL.html). ```python # -*- coding: utf-8 -*- import torch from qwen_vl_utils import process_vision_info from transformers import AutoProcessor from vllm import LLM, SamplingParams import os os.environ['VLLM_WORKER_MULTIPROC_METHOD'] = 'spawn' def prepare_inputs_for_vllm(messages, processor): text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True) # qwen_vl_utils 0.0.14+ reqired image_inputs, video_inputs, video_kwargs = process_vision_info( messages, image_patch_size=processor.image_processor.patch_size, return_video_kwargs=True, return_video_metadata=True ) print(f"video_kwargs: {video_kwargs}") mm_data = {} if image_inputs is not None: mm_data['image'] = image_inputs if video_inputs is not None: mm_data['video'] = video_inputs return { 'prompt': text, 'multi_modal_data': mm_data, 'mm_processor_kwargs': video_kwargs } if __name__ == '__main__': # messages = [ # { # "role": "user", # "content": [ # { # "type": "video", # "video": "https://qianwen-res.oss-cn-beijing.aliyuncs.com/Qwen2-VL/space_woaudio.mp4", # }, # {"type": "text", "text": "这段视频有多长"}, # ], # } # ] messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/receipt.png", }, {"type": "text", "text": "Read all the text in the image."}, ], } ] # TODO: change to your own checkpoint path checkpoint_path = "Qwen/Qwen3-VL-8B-Thinking-FP8" processor = AutoProcessor.from_pretrained(checkpoint_path) inputs = [prepare_inputs_for_vllm(message, processor) for message in [messages]] llm = LLM( model=checkpoint_path, trust_remote_code=True, gpu_memory_utilization=0.70, enforce_eager=False, tensor_parallel_size=torch.cuda.device_count(), seed=0 ) sampling_params = SamplingParams( temperature=0, max_tokens=1024, top_k=-1, stop_token_ids=[], ) for i, input_ in enumerate(inputs): print() print('=' * 40) print(f"Inputs[{i}]: {input_['prompt']=!r}") print('\n' + '>' * 40) outputs = llm.generate(inputs, sampling_params=sampling_params) for i, output in enumerate(outputs): generated_text = output.outputs[0].text print() print('=' * 40) print(f"Generated text: {generated_text!r}") ``` ### SGLang Inference Here we provide a code snippet demonstrating how to use SGLang to run inference with Qwen3-VL locally. ```python import time from PIL import Image from sglang import Engine from qwen_vl_utils import process_vision_info from transformers import AutoProcessor, AutoConfig if __name__ == "__main__": # TODO: change to your own checkpoint path checkpoint_path = "Qwen/Qwen3-VL-8B-Thinking-FP8" processor = AutoProcessor.from_pretrained(checkpoint_path) messages = [ { "role": "user", "content": [ { "type": "image", "image": "https://qianwen-res.oss-accelerate.aliyuncs.com/Qwen3-VL/receipt.png", }, {"type": "text", "text": "Read all the text in the image."}, ], } ] text = processor.apply_chat_template( messages, tokenize=False, add_generation_prompt=True ) image_inputs, _ = process_vision_info(messages, image_patch_size=processor.image_processor.patch_size) llm = Engine( model_path=checkpoint_path, enable_multimodal=True, mem_fraction_static=0.8, tp_size=torch.cuda.device_count(), attention_backend="fa3" ) start = time.time() sampling_params = {"max_new_tokens": 1024} response = llm.generate(prompt=text, image_data=image_inputs, sampling_params=sampling_params) print(f"Response costs: {time.time() - start:.2f}s") print(f"Generated text: {response['text']}") ``` ### Generation Hyperparameters #### VL ```bash export greedy='false' export top_p=0.95 export top_k=20 export repetition_penalty=1.0 export presence_penalty=0.0 export temperature=1.0 export out_seq_length=40960 ``` #### Text ```bash export greedy='false' export top_p=0.95 export top_k=20 export repetition_penalty=1.0 export presence_penalty=1.5 export temperature=1.0 export out_seq_length=32768 (for aime, lcb, and gpqa, it is recommended to set to 81920) ``` ## Citation If you find our work helpful, feel free to give us a cite. ``` @misc{qwen3technicalreport, title={Qwen3 Technical Report}, author={Qwen Team}, year={2025}, eprint={2505.09388}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2505.09388}, } @article{Qwen2.5-VL, title={Qwen2.5-VL Technical Report}, author={Bai, Shuai and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Song, Sibo and Dang, Kai and Wang, Peng and Wang, Shijie and Tang, Jun and Zhong, Humen and Zhu, Yuanzhi and Yang, Mingkun and Li, Zhaohai and Wan, Jianqiang and Wang, Pengfei and Ding, Wei and Fu, Zheren and Xu, Yiheng and Ye, Jiabo and Zhang, Xi and Xie, Tianbao and Cheng, Zesen and Zhang, Hang and Yang, Zhibo and Xu, Haiyang and Lin, Junyang}, journal={arXiv preprint arXiv:2502.13923}, year={2025} } @article{Qwen2VL, title={Qwen2-VL: Enhancing Vision-Language Model's Perception of the World at Any Resolution}, author={Wang, Peng and Bai, Shuai and Tan, Sinan and Wang, Shijie and Fan, Zhihao and Bai, Jinze and Chen, Keqin and Liu, Xuejing and Wang, Jialin and Ge, Wenbin and Fan, Yang and Dang, Kai and Du, Mengfei and Ren, Xuancheng and Men, Rui and Liu, Dayiheng and Zhou, Chang and Zhou, Jingren and Lin, Junyang}, journal={arXiv preprint arXiv:2409.12191}, year={2024} } @article{Qwen-VL, title={Qwen-VL: A Versatile Vision-Language Model for Understanding, Localization, Text Reading, and Beyond}, author={Bai, Jinze and Bai, Shuai and Yang, Shusheng and Wang, Shijie and Tan, Sinan and Wang, Peng and Lin, Junyang and Zhou, Chang and Zhou, Jingren}, journal={arXiv preprint arXiv:2308.12966}, year={2023} } ```