File size: 6,908 Bytes
a3021af |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 |
---
license: apache-2.0
---
# mistralai/Ministral-3-14B-Instruct-2512
For now you can only launch via vLLM or Transformers-private
- [vLLM](#vllm)
- [Transformers](#transformers) branch: https://github.com/mistralai/Transformers-private/pull/1/
The architecture change in comparison with Mistral-Small-3.2 is using Yarn with llama4 scaling.
Please note that 3B also has tied embeddings (no output layer) to reduce the number of weights. This is not the case of 8B and 14B.
## vLLM
1. install vLLM
```sh
VLLM_USE_PRECOMPILED=1 uv pip install git+https://github.com/vllm-project/vllm.git
```
2. Launch server
```sh
vllm serve mistralai/Ministral-3-14B-Instruct-2512 --tool-call-parser mistral \
--enable-auto-tool-choice --tensor-parallel-size 1
```
3. test it
```python
from datetime import datetime, timedelta
from openai import OpenAI
from huggingface_hub import hf_hub_download
# Modify OpenAI's API key and API base to use vLLM's API server.
openai_api_key = "EMPTY"
openai_api_base = "http://localhost:8000/v1"
TEMP = 0.15
MAX_TOK = 262144
client = OpenAI(
api_key=openai_api_key,
base_url=openai_api_base,
)
models = client.models.list()
model = models.data[0].id
def load_system_prompt() -> str:
file_path = hf_hub_download(repo_id="mistralai/Ministral-3-14B-Instruct-2512", filename="SYSTEM_PROMPT.txt")
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
return system_prompt.format(today=today, yesterday=yesterday)
SYSTEM_PROMPT = load_system_prompt()
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
response = client.chat.completions.create(
model=model,
messages=messages,
temperature=TEMP,
max_tokens=MAX_TOK,
)
print(response.choices[0].message.content)
```
## Transformers
1. install Transformers
```sh
pip install git+https://github.com/mistralai/Transformers-private@add_ministral3
```
or clone
```
git clone [email protected]:mistralai/Transformers-private.git
cd Transformers-private
git checkout add_ministal3
```
2. test (with mistral-common)
```sh
pip install mistral-common[image]
```
```python
from datetime import datetime, timedelta
import torch
from huggingface_hub import hf_hub_download
from transformers import Mistral3ForConditionalGeneration, AutoTokenizer
def load_system_prompt() -> str:
file_path = hf_hub_download(repo_id="mistralai/Ministral-3-14B-Instruct-2512", filename="SYSTEM_PROMPT.txt")
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
return system_prompt.format(today=today, yesterday=yesterday)
SYSTEM_PROMPT = load_system_prompt()
tokenizer = AutoTokenizer.from_pretrained("mistralai/Ministral-3-14B-Instruct-2512", tokenizer_type="mistral")
model = Mistral3ForConditionalGeneration.from_pretrained(
"mistralai/Ministral-3-14B-Instruct-2512", torch_dtype=torch.bfloat16, device_map="auto"
).eval()
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{"role": "system", "content": SYSTEM_PROMPT},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image_url", "image_url": {"url": image_url}},
],
},
]
tokenized = tokenizer.apply_chat_template(messages, return_dict=True)
input_ids = torch.tensor(tokenized.input_ids, device="cuda").unsqueeze(0)
attention_mask = torch.tensor(tokenized.attention_mask, device="cuda").unsqueeze(0)
pixel_values = torch.tensor(
tokenized.pixel_values[0], dtype=torch.bfloat16, device="cuda"
).unsqueeze(0)
image_sizes = torch.tensor(pixel_values.shape[-2:], device="cuda").unsqueeze(0)
with torch.inference_mode():
output = model.generate(
input_ids=input_ids,
attention_mask=attention_mask,
pixel_values=pixel_values,
image_sizes=image_sizes,
max_new_tokens=1000,
)[0]
decoded_output = tokenizer.decode(output, skip_special_tokens=True)
print(decoded_output)
```
3. test (without mistral-common)
```python
from datetime import datetime, timedelta
import torch
from huggingface_hub import hf_hub_download
from transformers import Mistral3ForConditionalGeneration, AutoProcessor
def load_system_prompt() -> str:
file_path = hf_hub_download(repo_id="mistralai/Ministral-3-14B-Instruct-2512", filename="SYSTEM_PROMPT.txt")
with open(file_path, "r") as file:
system_prompt = file.read()
today = datetime.today().strftime("%Y-%m-%d")
yesterday = (datetime.today() - timedelta(days=1)).strftime("%Y-%m-%d")
return system_prompt.format(name="mistralai/Ministral-3-14B-Instruct-2512".split("/")[-1], today=today, yesterday=yesterday)
SYSTEM_PROMPT = load_system_prompt()
processor = AutoProcessor.from_pretrained("mistralai/Ministral-3-14B-Instruct-2512")
model = Mistral3ForConditionalGeneration.from_pretrained(
"mistralai/Ministral-3-14B-Instruct-2512", torch_dtype=torch.bfloat16, device_map="auto"
).eval()
image_url = "https://static.wikia.nocookie.net/essentialsdocs/images/7/70/Battle.png/revision/latest?cb=20220523172438"
messages = [
{"role": "system", "content": [
{"type": "text", "text": SYSTEM_PROMPT}
]},
{
"role": "user",
"content": [
{
"type": "text",
"text": "What action do you think I should take in this situation? List all the possible actions and explain why you think they are good or bad.",
},
{"type": "image", "url": image_url},
],
},
]
inputs = processor.apply_chat_template(messages, add_generation_prompt=True, tokenize=True, return_dict=True, return_tensors="pt").to(device=model.device, dtype=torch.bfloat16)
with torch.inference_mode():
output = model.generate(
**inputs,
max_new_tokens=1000,
)
decoded_output = processor.batch_decode(output, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
print(decoded_output)
``` |