Upload folder using huggingface_hub
Browse files
README.md
ADDED
|
@@ -0,0 +1,256 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model:
|
| 3 |
+
- LiquidAI/LFM2-350M
|
| 4 |
+
library_name: transformers
|
| 5 |
+
license: other
|
| 6 |
+
license_name: lfm1.0
|
| 7 |
+
license_link: LICENSE
|
| 8 |
+
language:
|
| 9 |
+
- en
|
| 10 |
+
- ar
|
| 11 |
+
- zh
|
| 12 |
+
- fr
|
| 13 |
+
- de
|
| 14 |
+
- ja
|
| 15 |
+
- ko
|
| 16 |
+
- es
|
| 17 |
+
pipeline_tag: text-generation
|
| 18 |
+
tags:
|
| 19 |
+
- liquid
|
| 20 |
+
- unsloth
|
| 21 |
+
- lfm2
|
| 22 |
+
- edge
|
| 23 |
+
---
|
| 24 |
+
> [!NOTE]
|
| 25 |
+
> Includes our **chat template fixes**! <br> For `llama.cpp`, use `--jinja`
|
| 26 |
+
>
|
| 27 |
+
|
| 28 |
+
<div>
|
| 29 |
+
<p style="margin-top: 0;margin-bottom: 0;">
|
| 30 |
+
<em><a href="https://docs.unsloth.ai/basics/unsloth-dynamic-v2.0-gguf">Unsloth Dynamic 2.0</a> achieves superior accuracy & outperforms other leading quants.</em>
|
| 31 |
+
</p>
|
| 32 |
+
<div style="display: flex; gap: 5px; align-items: center; ">
|
| 33 |
+
<a href="https://github.com/unslothai/unsloth/">
|
| 34 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/unsloth%20new%20logo.png" width="133">
|
| 35 |
+
</a>
|
| 36 |
+
<a href="https://discord.gg/unsloth">
|
| 37 |
+
<img src="https://github.com/unslothai/unsloth/raw/main/images/Discord%20button.png" width="173">
|
| 38 |
+
</a>
|
| 39 |
+
<a href="https://docs.unsloth.ai/">
|
| 40 |
+
<img src="https://raw.githubusercontent.com/unslothai/unsloth/refs/heads/main/images/documentation%20green%20button.png" width="143">
|
| 41 |
+
</a>
|
| 42 |
+
</div>
|
| 43 |
+
</div>
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
<center>
|
| 47 |
+
<div style="text-align: center;">
|
| 48 |
+
<img
|
| 49 |
+
src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/7_6D7rWrLxp2hb6OHSV1p.png"
|
| 50 |
+
alt="Liquid AI"
|
| 51 |
+
style="width: 100%; max-width: 66%; height: auto; display: inline-block; margin-bottom: 0.5em; margin-top: 0.5em;"
|
| 52 |
+
/>
|
| 53 |
+
</div>
|
| 54 |
+
|
| 55 |
+
<a href="https://playground.liquid.ai/chat">
|
| 56 |
+
<svg width="114.8" height="20" viewBox="0 0 1300 200" xmlns="http://www.w3.org/2000/svg" role="img" aria-label="Liquid Playground" style="margin-bottom: 1em;">
|
| 57 |
+
<title>Liquid: Playground</title>
|
| 58 |
+
<g>
|
| 59 |
+
<rect fill="#fff" width="600" height="200"></rect>
|
| 60 |
+
<rect fill="url(#x)" x="600" width="700" height="200"></rect>
|
| 61 |
+
</g>
|
| 62 |
+
<g transform="translate(20, 30) scale(0.4, 0.4)">
|
| 63 |
+
<path d="M172.314 129.313L172.219 129.367L206.125 188.18C210.671 195.154 213.324 203.457 213.324 212.382C213.324 220.834 210.956 228.739 206.839 235.479L275.924 213.178L167.853 33.6L141.827 76.9614L172.314 129.313Z" fill="black"/>
|
| 64 |
+
<path d="M114.217 302.4L168.492 257.003C168.447 257.003 168.397 257.003 168.352 257.003C143.515 257.003 123.385 237.027 123.385 212.387C123.385 203.487 126.023 195.204 130.55 188.24L162.621 132.503L135.966 86.7327L60.0762 213.183L114.127 302.4H114.217Z" fill="black"/>
|
| 65 |
+
<path d="M191.435 250.681C191.435 250.681 191.43 250.681 191.425 250.686L129.71 302.4H221.294L267.71 226.593L191.435 250.686V250.681Z" fill="black"/>
|
| 66 |
+
</g>
|
| 67 |
+
<g aria-hidden="true" fill="#fff" text-anchor="start" font-family="Verdana,DejaVu Sans,sans-serif" font-size="110">
|
| 68 |
+
<text x="200" y="148" textLength="329" fill="#000" opacity="0.1">Liquid</text>
|
| 69 |
+
<text x="190" y="138" textLength="329" fill="#000">Liquid</text>
|
| 70 |
+
<text x="655" y="148" textLength="619" fill="#000" opacity="0.1">Playground</text>
|
| 71 |
+
<text x="645" y="138" textLength="619">Playground</text>
|
| 72 |
+
</g>
|
| 73 |
+
|
| 74 |
+
<linearGradient id="x" x1="0%" y1="0%" x2="100%" y2="0%">
|
| 75 |
+
<stop offset="0%" style="stop-color:#000000"></stop>
|
| 76 |
+
<stop offset="100%" style="stop-color:#000000"></stop>
|
| 77 |
+
</linearGradient>
|
| 78 |
+
</svg>
|
| 79 |
+
</a>
|
| 80 |
+
</center>
|
| 81 |
+
|
| 82 |
+
# LFM2-350M
|
| 83 |
+
|
| 84 |
+
LFM2 is a new generation of hybrid models developed by [Liquid AI](https://www.liquid.ai/), specifically designed for edge AI and on-device deployment. It sets a new standard in terms of quality, speed, and memory efficiency.
|
| 85 |
+
|
| 86 |
+
We're releasing the weights of three post-trained checkpoints with 350M, 700M, and 1.2B parameters. They provide the following key features to create AI-powered edge applications:
|
| 87 |
+
|
| 88 |
+
* **Fast training & inference** β LFM2 achieves 3x faster training compared to its previous generation. It also benefits from 2x faster decode and prefill speed on CPU compared to Qwen3.
|
| 89 |
+
* **Best performance** β LFM2 outperforms similarly-sized models across multiple benchmark categories, including knowledge, mathematics, instruction following, and multilingual capabilities.
|
| 90 |
+
* **New architecture** β LFM2 is a new hybrid Liquid model with multiplicative gates and short convolutions.
|
| 91 |
+
* **Flexible deployment** β LFM2 runs efficiently on CPU, GPU, and NPU hardware for flexible deployment on smartphones, laptops, or vehicles.
|
| 92 |
+
|
| 93 |
+
Find more information about LFM2 in our [blog post](https://www.liquid.ai/blog/liquid-foundation-models-v2-our-second-series-of-generative-ai-models).
|
| 94 |
+
|
| 95 |
+
## π Model details
|
| 96 |
+
|
| 97 |
+
Due to their small size, **we recommend fine-tuning LFM2 models on narrow use cases** to maximize performance.
|
| 98 |
+
They are particularly suited for agentic tasks, data extraction, RAG, creative writing, and multi-turn conversations.
|
| 99 |
+
However, we do not recommend using them for tasks that are knowledge-intensive or require programming skills.
|
| 100 |
+
|
| 101 |
+
| Property | Value |
|
| 102 |
+
| ------------------- | ----------------------------- |
|
| 103 |
+
| **Parameters** | 354,483,968 |
|
| 104 |
+
| **Layers** | 16 (10 conv + 6 attn) |
|
| 105 |
+
| **Context length** | 32,768 tokens |
|
| 106 |
+
| **Vocabulary size** | 65,536 |
|
| 107 |
+
| **Precision** | bfloat16 |
|
| 108 |
+
| **Training budget** | 10 trillion tokens |
|
| 109 |
+
| **License** | LFM Open License v1.0 |
|
| 110 |
+
|
| 111 |
+
**Supported languages**: English, Arabic, Chinese, French, German, Japanese, Korean, and Spanish.
|
| 112 |
+
|
| 113 |
+
**Generation parameters**: We recommend the following parameters:
|
| 114 |
+
* `temperature=0.3`
|
| 115 |
+
* `min_p=0.15`
|
| 116 |
+
* `repetition_penalty=1.05`
|
| 117 |
+
|
| 118 |
+
**Chat template**: LFM2 uses a ChatML-like chat template as follows:
|
| 119 |
+
|
| 120 |
+
```
|
| 121 |
+
<|startoftext|><|im_start|>system
|
| 122 |
+
You are a helpful assistant trained by Liquid AI.<|im_end|>
|
| 123 |
+
<|im_start|>user
|
| 124 |
+
What is C. elegans?<|im_end|>
|
| 125 |
+
<|im_start|>assistant
|
| 126 |
+
It's a tiny nematode that lives in temperate soil environments.<|im_end|>
|
| 127 |
+
```
|
| 128 |
+
|
| 129 |
+
You can apply it using the dedicated [`.apply_chat_template()`](https://huggingface.co/docs/transformers/en/chat_templating#applychattemplate) function from Hugging Face transformers.
|
| 130 |
+
|
| 131 |
+
**Tool use**: It consists of four main steps:
|
| 132 |
+
1. **Function definition**: LFM2 takes JSON function definitions as input (JSON objects between `<|tool_list_start|>` and `<|tool_list_end|>` special tokens), usually in the system prompt
|
| 133 |
+
2. **Function call**: LFM2 writes Pythonic function calls (a Python list between `<|tool_call_start|>` and `<|tool_call_end|>` special tokens), as the assistant answer.
|
| 134 |
+
3. **Function execution**: The function call is executed and the result is returned (string between `<|tool_response_start|>` and `<|tool_response_end|>` special tokens), as a "tool" role.
|
| 135 |
+
4. **Final answer**: LFM2 interprets the outcome of the function call to address the original user prompt in plain text.
|
| 136 |
+
|
| 137 |
+
Here is a simple example of a conversation using tool use:
|
| 138 |
+
|
| 139 |
+
```
|
| 140 |
+
<|startoftext|><|im_start|>system
|
| 141 |
+
List of tools: <|tool_list_start|>[{"name": "get_candidate_status", "description": "Retrieves the current status of a candidate in the recruitment process", "parameters": {"type": "object", "properties": {"candidate_id": {"type": "string", "description": "Unique identifier for the candidate"}}, "required": ["candidate_id"]}}]<|tool_list_end|><|im_end|>
|
| 142 |
+
<|im_start|>user
|
| 143 |
+
What is the current status of candidate ID 12345?<|im_end|>
|
| 144 |
+
<|im_start|>assistant
|
| 145 |
+
<|tool_call_start|>[get_candidate_status(candidate_id="12345")]<|tool_call_end|>Checking the current status of candidate ID 12345.<|im_end|>
|
| 146 |
+
<|im_start|>tool
|
| 147 |
+
<|tool_response_start|>{"candidate_id": "12345", "status": "Interview Scheduled", "position": "Clinical Research Associate", "date": "2023-11-20"}<|tool_response_end|><|im_end|>
|
| 148 |
+
<|im_start|>assistant
|
| 149 |
+
The candidate with ID 12345 is currently in the "Interview Scheduled" stage for the position of Clinical Research Associate, with an interview date set for 2023-11-20.<|im_end|>
|
| 150 |
+
```
|
| 151 |
+
|
| 152 |
+
**Architecture**: Hybrid model with multiplicative gates and short convolutions: 10 double-gated short-range LIV convolution blocks and 6 grouped query attention (GQA) blocks.
|
| 153 |
+
|
| 154 |
+
**Pre-training mixture**: Approximately 75% English, 20% multilingual, and 5% code data sourced from the web and licensed materials.
|
| 155 |
+
|
| 156 |
+
**Training approach**:
|
| 157 |
+
* Knowledge distillation using [LFM1-7B](https://www.liquid.ai/blog/introducing-lfm-7b-setting-new-standards-for-efficient-language-models) as teacher model
|
| 158 |
+
* Very large-scale SFT on 50% downstream tasks, 50% general domains
|
| 159 |
+
* Custom DPO with length normalization and semi-online datasets
|
| 160 |
+
* Iterative model merging
|
| 161 |
+
|
| 162 |
+
## π How to run LFM2
|
| 163 |
+
|
| 164 |
+
To run LFM2, you need to install Hugging Face [`transformers`](https://github.com/huggingface/transformers) from source (v4.54.0.dev0).
|
| 165 |
+
You can update or install it with the following command: `pip install "transformers @ git+https://github.com/huggingface/transformers.git@main"`.
|
| 166 |
+
|
| 167 |
+
Here is an example of how to generate an answer with transformers in Python:
|
| 168 |
+
|
| 169 |
+
```python
|
| 170 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 171 |
+
|
| 172 |
+
# Load model and tokenizer
|
| 173 |
+
model_id = "LiquidAI/LFM2-350M"
|
| 174 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 175 |
+
model_id,
|
| 176 |
+
device_map="auto",
|
| 177 |
+
torch_dtype="bfloat16",
|
| 178 |
+
trust_remote_code=True,
|
| 179 |
+
# attn_implementation="flash_attention_2" <- uncomment on compatible GPU
|
| 180 |
+
)
|
| 181 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 182 |
+
|
| 183 |
+
# Generate answer
|
| 184 |
+
prompt = "What is C. elegans?"
|
| 185 |
+
input_ids = tokenizer.apply_chat_template(
|
| 186 |
+
[{"role": "user", "content": prompt}],
|
| 187 |
+
add_generation_prompt=True,
|
| 188 |
+
return_tensors="pt",
|
| 189 |
+
tokenize=True,
|
| 190 |
+
).to(model.device)
|
| 191 |
+
|
| 192 |
+
output = model.generate(
|
| 193 |
+
input_ids,
|
| 194 |
+
do_sample=True,
|
| 195 |
+
temperature=0.3,
|
| 196 |
+
min_p=0.15,
|
| 197 |
+
repetition_penalty=1.05,
|
| 198 |
+
max_new_tokens=512,
|
| 199 |
+
)
|
| 200 |
+
|
| 201 |
+
print(tokenizer.decode(output[0], skip_special_tokens=False))
|
| 202 |
+
|
| 203 |
+
# <|startoftext|><|im_start|>user
|
| 204 |
+
# What is C. elegans?<|im_end|>
|
| 205 |
+
# <|im_start|>assistant
|
| 206 |
+
# C. elegans, also known as Caenorhabditis elegans, is a small, free-living
|
| 207 |
+
# nematode worm (roundworm) that belongs to the phylum Nematoda.
|
| 208 |
+
```
|
| 209 |
+
|
| 210 |
+
You can directly run and test the model with this [Colab notebook](https://colab.research.google.com/drive/1_q3jQ6LtyiuPzFZv7Vw8xSfPU5FwkKZY?usp=sharing).
|
| 211 |
+
|
| 212 |
+
## π§ How to fine-tune LFM2
|
| 213 |
+
|
| 214 |
+
We recommend fine-tuning LFM2 models on your use cases to maximize performance.
|
| 215 |
+
|
| 216 |
+
| Notebook | Description | Link |
|
| 217 |
+
|-------|------|------|
|
| 218 |
+
| SFT + LoRA | Supervised Fine-Tuning (SFT) notebook with a LoRA adapter in TRL. | <a href="https://colab.research.google.com/drive/1j5Hk_SyBb2soUsuhU0eIEA9GwLNRnElF?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="120" alt="Colab link"></a> |
|
| 219 |
+
| DPO | Preference alignment with Direct Preference Optimization (DPO) in TRL. | <a href="https://colab.research.google.com/drive/1MQdsPxFHeZweGsNx4RH7Ia8lG8PiGE1t?usp=sharing"><img src="https://cdn-uploads.huggingface.co/production/uploads/61b8e2ba285851687028d395/vlOyMEjwHa_b_LXysEu2E.png" width="120" alt="Colab link"></a> |
|
| 220 |
+
|
| 221 |
+
## π Performance
|
| 222 |
+
|
| 223 |
+
LFM2 outperforms similar-sized models across different evaluation categories.
|
| 224 |
+
|
| 225 |
+
### 1. Automated benchmarks
|
| 226 |
+
|
| 227 |
+

|
| 228 |
+
|
| 229 |
+
| Model | MMLU | GPQA | IFEval | IFBench | GSM8K | MGSM | MMMLU |
|
| 230 |
+
|-------|------|------|--------|---------|-------|------|-------|
|
| 231 |
+
| LFM2-350M | 43.43 | 27.46 | 65.12 | 16.41 | 30.1 | 29.52 | 37.99 |
|
| 232 |
+
| LFM2-700M | 49.9 | 28.48 | 72.23 | 20.56 | 46.4 | 45.36 | 43.28 |
|
| 233 |
+
| LFM2-1.2B | *55.23* | **31.47** | **74.89** | *20.7* | *58.3* | *55.04* | **46.73** |
|
| 234 |
+
| Qwen3-0.6B | 44.93 | 22.14 | 64.24 | 19.75 | 36.47 | 41.28 | 30.84 |
|
| 235 |
+
| Qwen3-1.7B | **59.11** | 27.72 | *73.98* | **21.27** | 51.4 | **66.56** | *46.51* |
|
| 236 |
+
| Llama-3.2-1B-Instruct | 46.6 | *28.84* | 52.39 | 16.86 | 35.71 | 29.12 | 38.15 |
|
| 237 |
+
| gemma-3-1b-it | 40.08 | 21.07 | 62.9 | 17.72 | **59.59** | 43.6 | 34.43 |
|
| 238 |
+
|
| 239 |
+
### 2. LLM-as-a-Judge
|
| 240 |
+
|
| 241 |
+

|
| 242 |
+

|
| 243 |
+
|
| 244 |
+
### 3. Inference
|
| 245 |
+
|
| 246 |
+
#### Throughput comparison on CPU in ExecuTorch
|
| 247 |
+
|
| 248 |
+

|
| 249 |
+
|
| 250 |
+
#### Throughput comparison on CPU in Llama.cpp
|
| 251 |
+
|
| 252 |
+

|
| 253 |
+
|
| 254 |
+
## π¬ Contact
|
| 255 |
+
|
| 256 |
+
If you are interested in custom solutions with edge deployment, please contact [our sales team](https://www.liquid.ai/contact).
|