File size: 7,054 Bytes
08b8186
fb67d59
 
 
08b8186
fb67d59
 
 
 
 
 
 
08b8186
fb67d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d6e74
fb67d59
b6d6e74
fb67d59
 
b6d6e74
fb67d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d6e74
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fb67d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b6d6e74
 
fb67d59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
---

quantized_by: ubergarm
pipeline_tag: text-generation
base_model: Qwen/Qwen3-235B-A22B-Thinking-2507
license: apache-2.0
license_link: https://huggingface.co/Qwen/Qwen3-235B-A22B-Thinking-2507/blob/main/LICENSE
base_model_relation: quantized
tags:
- imatrix
- conversational
- qwen3_moe
- ik_llama.cpp
---


## `ik_llama.cpp` imatrix Quantizations of Qwen/Qwen3-235B-A22B-Thinking-2507

This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!



*NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.

Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP.

These quants provide best in class perplexity for the given memory footprint.

## Big Thanks
Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)!  **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!

Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!

## Quant Collection
Perplexity computed against *wiki.test.raw*. These first two are just test quants for baseline perplexity comparison:

![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.")

* `bf16` 437.989 GiB (16.003 BPW)
  - Final estimate: PPL = TODO
* `Q8_0` 232.769 GiB (8.505 BPW)
  - Final estimate: PPL = TODO

## `IQ5_K` 161.722 GiB (5.909 BPW)

Final estimate: PPL = TODO



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



# Repeating Layers [0-93]



custom="

# Attention

blk\..*\.attn_q.*=iq6_k

blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0

blk\..*\.attn_output.*=iq6_k



# Routed Experts

blk\..*\.ffn_down_exps\.weight=iq6_k

blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k

# Token Embedding
token_embd\.weight=iq6_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/imatrix-Qwen3-235B-A22B-Thinking-2507-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/Qwen3-235B-A22B-Thinking-2507-BF16-00001-of-00010.gguf \

    /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/Qwen3-235B-A22B-Thinking-2507-IQ5_K.gguf \
    IQ5_K \

    192

```


</details>

## `IQ4_K` 134.183 GiB (4.903 BPW)

Final estimate: PPL = TODO



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



# Repeating Layers [0-93]



custom="

# Attention

blk\..*\.attn_q.*=iq6_k

blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0

blk\..*\.attn_output.*=iq6_k



# Routed Experts

blk\..*\.ffn_down_exps\.weight=iq5_k

blk\..*\.ffn_(gate|up)_exps\.weight=iq4_k

# Token Embedding
token_embd\.weight=iq6_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 1 -m 1 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/imatrix-Qwen3-235B-A22B-Thinking-2507-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/Qwen3-235B-A22B-Thinking-2507-BF16-00001-of-00010.gguf \

    /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/Qwen3-235B-A22B-Thinking-2507-IQ4_K.gguf \
    IQ4_K \

    192

```


</details>



## `IQ3_K` 106.644 GiB (3.897 BPW)

Final estimate: PPL = TODO



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



# Repeating Layers [0-93]



custom="

# Attention

blk\..*\.attn_q.*=iq6_k

blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0

blk\..*\.attn_output.*=iq6_k



# Routed Experts

blk\..*\.ffn_down_exps\.weight=iq4_k

blk\..*\.ffn_(gate|up)_exps\.weight=iq3_k

# Token Embedding
token_embd\.weight=iq6_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 1 -m 1 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/imatrix-Qwen3-235B-A22B-Thinking-2507-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/Qwen3-235B-A22B-Thinking-2507-BF16-00001-of-00010.gguf \

    /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/Qwen3-235B-A22B-Thinking-2507-IQ3_K.gguf \
    IQ3_K \

    192

```


</details>

## `IQ2_KL` 81.866 GiB (2.991 BPW)

Final estimate: PPL = 4.6608 +/- 0.02720



<details>



<summary>πŸ‘ˆ Secret Recipe</summary>



```bash

#!/usr/bin/env bash



# Repeating Layers [0-93]



custom="

# Attention

blk\..*\.attn_q.*=iq6_k

blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0

blk\..*\.attn_output.*=iq6_k



# Routed Experts

blk\..*\.ffn_down_exps\.weight=iq3_ks

blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl

# Token Embedding
token_embd\.weight=iq4_k
output\.weight=iq6_k

"



custom=$(

  echo "$custom" | grep -v '^#' | \

  sed -Ez 's:\n+:,:g;s:,$::;s:^,::'

)



numactl -N 0 -m 0 \

./build/bin/llama-quantize \

    --custom-q "$custom" \

    --imatrix /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/imatrix-Qwen3-235B-A22B-Thinking-2507-BF16.dat \

    /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/Qwen3-235B-A22B-Thinking-2507-BF16-00001-of-00010.gguf \

    /mnt/raid/models/ubergarm/Qwen3-235B-A22B-Thinking-2507-GGUF/Qwen3-235B-A22B-Thinking-2507-IQ2_KL.gguf \
    IQ2_KL \

    192

```


</details>

## Quick Start
This example is for a single CUDA GPU hybrid infrencing with CPU/RAM. Check ik_llama.cpp discussions or my other quants for more examples for multi-GPU etc.



```bash

./build/bin/llama-server \

  --model /models/IQ5_K/Qwen3-235B-A22B-Thinking-IQ5_K-00001-of-00004.gguf \

  --alias ubergarm/Qwen3-235B-A22B-Thinking-2507 \

  -fa -fmoe \

  -ctk q8_0 -ctv q8_0 \

  -c 32768 \

  -ngl 99 \

  -ot "blk\.[0-9]\.ffn.*=CUDA0" \

  -ot "blk.*\.ffn.*=CPU \

  --threads 16 \

  -ub 4096 -b 4096 \

  --host 127.0.0.1 \

  --port 8080

```



## References

* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)

* [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)