ubergarm commited on
Commit
bc0c484
·
1 Parent(s): 10f5aa5

initial commit

Browse files
Files changed (2) hide show
  1. .gitattributes +3 -0
  2. README.md +104 -3
.gitattributes CHANGED
@@ -33,3 +33,6 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ imatrix-*.dat filter=lfs diff=lfs merge=lfs -text
37
+ *.gguf filter=lfs diff=lfs merge=lfs -text
38
+ *.png filter=lfs diff=lfs merge=lfs -text
README.md CHANGED
@@ -1,3 +1,104 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ quantized_by: ubergarm
3
+ pipeline_tag: text-generation
4
+ base_model: inclusionAI/Ling-1T
5
+ license: mit
6
+ base_model_relation: quantized
7
+ tags:
8
+ - imatrix
9
+ - bailing_moe
10
+ - conversational
11
+ - ik_llama.cpp
12
+ ---
13
+
14
+ ## `ik_llama.cpp` imatrix Quantizations of inclusionAI/Ling-1T
15
+ This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!
16
+
17
+ *NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.
18
+
19
+ Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP with Windows builds for CUDA 12.9. Also check for [Windows builds by Thireus here.](https://github.com/Thireus/ik_llama.cpp/releases) which have been CUDA 12.8.
20
+
21
+ These quants provide best in class perplexity for the given memory footprint.
22
+
23
+ ## Big Thanks
24
+ Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)! **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!
25
+
26
+ Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!
27
+
28
+ ## Quant Collection
29
+ Perplexity computed against *wiki.test.raw*.
30
+
31
+ ![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.")
32
+
33
+ This one is just a test quant for baseline perplexity comparison:
34
+ * `Q8_0` 989.678 GiB (8.504 BPW)
35
+ - Final estimate: PPL = TODO
36
+
37
+ ## smol-IQ4_KSS TODO
38
+ Final estimate: PPL = TODO
39
+
40
+ ## smol-IQ2_KS TODO
41
+ Final estimate: PPL = TODO
42
+
43
+ Should hopefully fit in 249.38 GiB RAM + 14.3 GiB VRAM + kv-cache/context...🤞
44
+
45
+ Leaving the `attn.*`/first 4 dense layers/shexp at full q8_0 would take about 20.1 GiB VRAM, might do some other quants like that for folks with more VRAM.
46
+
47
+ <details>
48
+
49
+ <summary>👈 Secret Recipe</summary>
50
+
51
+ ```bash
52
+ custom="
53
+ # 80 Repeating Layers [0-79]
54
+
55
+ # Attention
56
+ blk\..*\.attn_qkv.*=iq6_k
57
+ blk\..*\.attn_output.*=iq6_k
58
+
59
+ # First 4 Dense Layers [0-3]
60
+ blk\..*\.ffn_down\.weight=iq5_ks
61
+ blk\..*\.ffn_(gate|up)\.weight=iq5_ks
62
+
63
+ # Shared Expert Layers [3-79]
64
+ blk\..*\.ffn_down_shexp\.weight=iq5_ks
65
+ blk\..*\.ffn_(gate|up)_shexp\.weight=iq5_ks
66
+
67
+ # Routed Experts Layers [3-79]
68
+ blk\..*\.ffn_down_exps\.weight=iq2_ks
69
+ blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks
70
+
71
+ # Non-Repeating Layers
72
+ token_embd\.weight=iq4_k
73
+ output\.weight=iq6_k
74
+ "
75
+
76
+ custom=$(
77
+ echo "$custom" | grep -v '^#' | \
78
+ sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
79
+ )
80
+
81
+ numactl -N ${SOCKET} -m ${SOCKET} \
82
+ ./build/bin/llama-quantize \
83
+ --custom-q "$custom" \
84
+ --imatrix /mnt/data/models/ubergarm/Ling-1T-GGUF/imatrix-Ling-1T-Q8_0.dat \
85
+ /mnt/data/models/ubergarm/Ling-1T-GGUF/Ling-1T-BF16-00001-of-00046.gguf \
86
+ /mnt/data/models/ubergarm/Ling-1T-GGUF/Ling-1T-smol-IQ2_KS.gguf
87
+ IQ2_KS \
88
+ 192
89
+ ```
90
+
91
+ </details>
92
+
93
+
94
+ ## Quick Start
95
+ ```bash
96
+ echo TODO
97
+ ```
98
+
99
+ ## References
100
+ * [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
101
+ * [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)
102
+ * [ubergarm-imatrix-calibration-corpus-v02.txt](https://gist.github.com/ubergarm/edfeb3ff9c6ec8b49e88cdf627b0711a?permalink_comment_id=5682584#gistcomment-5682584)
103
+ * [ik_llama.cpp PR833](https://github.com/ikawrakow/ik_llama.cpp/pull/833)
104
+ * [mainline llama.cpp PR16063](https://github.com/ggml-org/llama.cpp/pull/16063)