File size: 17,107 Bytes
395e6ac 5b3c791 2a831b0 395e6ac 507a7ef 5484183 395e6ac a0ffddc 507a7ef 395e6ac 507a7ef 395e6ac 16fe8c2 2a831b0 053f8a7 2a831b0 a0ffddc 16fe8c2 507a7ef 16fe8c2 b477b64 16fe8c2 395e6ac 16fe8c2 5b2c238 16fe8c2 a2ec5f8 b20fd34 053f8a7 b477b64 3ab9f0c b20fd34 3ab9f0c 507a7ef 3ab9f0c a2d5b08 9440be5 a2d5b08 b105388 a2ec5f8 507a7ef 5b3c791 c3bbf8e 5b3c791 16fe8c2 3ab9f0c 16fe8c2 e0e221d 5b2c238 50e453e 5b2c238 50e453e 5b2c238 0bd9042 5b2c238 0bd9042 5b2c238 62b4b9a 50e453e 62b4b9a 5b2c238 0bd9042 5b2c238 0bd9042 4319c19 395e6ac e0e221d 395e6ac |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 |
---
quantized_by: ubergarm
pipeline_tag: text-generation
base_model: moonshotai/Kimi-K2-Thinking
license: other
license_name: modified-mit
license_link: https://huggingface.co/moonshotai/Kimi-K2-Thinking/blob/main/LICENSE
base_model_relation: quantized
tags:
- mla
- imatrix
- conversational
- ik_llama.cpp
---
## imatrix Quantization of moonshotai/Kimi-K2-Thinking
The "full quality" baseline `Q4_X` quant runs on both on mainline llama.cpp and ik_llama.cpp. The other quants in this collection **REQUIRE** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!
*NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.
Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP with Windows builds for CUDA 12.9. Also check for [Windows builds by Thireus here.](https://github.com/Thireus/ik_llama.cpp/releases) which have been CUDA 12.8.
These quants provide best in class perplexity for the given memory footprint.
## Big Thanks
Great job ngxson, compilade, DevQuasar, Bartowski, AesSedai, and more folks who pulled together hacking to get this out quickly! π«Ά and jukofyork for the `Q4_X` patch!
Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)! **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!
Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!
Finally, I *really* appreciate all the support from [aifoundry.org](https://aifoundry.org) so check out their open source RISC-V solutions, and of course huggingface for hosting all these big quants!
## Quant Collection
Perplexity computed against *wiki.test.raw*.

## Q4_X 543.617 GiB (4.549 BPW)
The `Q4_X` version scores perplexity equivalent to a full 1TB Q8_0 test quant using a one line patch to adjust q4_0 to better fit the original QAT target quantization. Discussions ongoing on [llama.cpp PR#17064](https://github.com/ggml-org/llama.cpp/pull/17069) and [directly with moonshot on their huggingface discussions](https://huggingface.co/moonshotai/Kimi-K2-Thinking/discussions/26) ai as it seems they only used 15 of 16 possible 4bit values possibly?
Final estimate: PPL = 2.0818 +/- 0.00903
This is the "full quality" baseline version of the model and the only one in this collection with works on *both* ik_llama.cpp and mainline llama.cpp. It does *not* use an imatrix and was created going from the original model to full bf16 before further quantization. The exact PR used is linked below in references. This quant was used to make the imatrix for the rest of the collection.
<details>
<summary>π Secret Recipe</summary>
```bash
#!/usr/bin/env bash
# Q4_0 (patched) routed experts approximating original QAT design
# Q8_0 everything else
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=q4_0
blk\..*\.ffn_(gate|up)_exps\.weight=q4_0
token_embd\.weight=q8_0
output\.weight=q8_0
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
--custom-q "$custom" \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/-384x14B-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/Kimi-K2-Thinking-Q8_0-Q4_0.gguf \
Q8_0 \
128
```
</details>
## smol-IQ4_KSS 485.008 GiB (4.059 BPW)
Final estimate: PPL = 2.1343 +/- 0.00934
<details>
<summary>π Secret Recipe</summary>
```bash
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq4_kss
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss
token_embd\.weight=iq6_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/imatrix-Kimi-K2-Thinking-Q8_0-Q4_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/-384x14B-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/Kimi-K2-Thinking-smol-IQ4_KSS.gguf \
IQ4_KSS \
128
```
</details>
## IQ3_K 459.432 GiB (3.845 BPW)
Final estimate: PPL = 2.1456 +/- 0.00941
*NOTE*: Given there were some issues with the original q4_0 quantization, I've replaced the original IQ3_K with this new smaller one using the patched q4_x quantization. The original one was `474.772 GiB (3.973 BPW)` and will be squash deleted to save on public quota soon. This new one uses q4_x patched and only applies imatrix to the iq3_k tensors but *not* to the q8_0 or q4_x. More details in [discussion 4 here](https://huggingface.co/ubergarm/Kimi-K2-Thinking-GGUF/discussions/4#6918a268149cb086f69915ce). It has almost the same perplexity so a good improvement.
<details>
<summary>π Secret Recipe</summary>
```bash
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=q4_0
blk\..*\.ffn_(gate|up)_exps\.weight=iq3_k
token_embd\.weight=iq6_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/imatrix-Kimi-K2-Thinking-Q8_0-Q4_0.dat \
--include-weights ffn_gate_exps \
--include-weights ffn_up_exps \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/-384x14B-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/Kimi-K2-Thinking-IQ3_K.gguf \
IQ3_K \
128
```
</details>
## smol-IQ3_KS 398.561 GiB (3.336 BPW)
Final estimate: PPL = 2.2331 +/- 0.01001
<details>
<summary>π Secret Recipe</summary>
```bash
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\.(1|2|3|60)\.ffn_down_exps\.weight=q4_0
blk\.(1|2|3|60)\.ffn_(gate|up)_exps\.weight=q4_0
blk\..*\.ffn_down_exps\.weight=iq3_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq3_ks
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/imatrix-Kimi-K2-Thinking-Q8_0-Q4_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/-384x14B-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/Kimi-K2-Thinking-smol-IQ3_KS.gguf \
IQ3_KS \
128
```
</details>
## IQ2_KL 348.883 GiB (2.920 BPW)
Final estimate: PPL = 2.3735 +/- 0.01082
<details>
<summary>π Secret Recipe</summary>
```bash
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq3_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/imatrix-Kimi-K2-Thinking-Q8_0-Q4_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/-384x14B-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/Kimi-K2-Thinking-IQ2_KL.gguf \
IQ2_KL \
128
```
</details>
## smol-IQ2_KL 329.195 GiB (2.755 BPW)
Final estimate: PPL = 2.4550 +/- 0.01129
<details>
<summary>π Secret Recipe</summary>
```bash
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq2_kl
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/imatrix-Kimi-K2-Thinking-Q8_0-Q4_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/-384x14B-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/Kimi-K2-Thinking-smol-IQ2_KL.gguf \
IQ2_KL \
128
```
</details>
## smol-IQ2_KS 270.133 GiB (2.261 BPW)
Final estimate: PPL = 2.9361 +/- 0.01451
<details>
<summary>π Secret Recipe</summary>
```bash
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq2_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/imatrix-Kimi-K2-Thinking-Q8_0-Q4_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/-384x14B-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/Kimi-K2-Thinking-smol-IQ2_KS.gguf \
IQ2_KS \
128
```
</details>
## smol-IQ1_KT 218.936 GiB (1.832 BPW)
Final estimate: PPL = 3.5931 +/- 0.01889
*only for the desperate*
Also keep in mind `KT` trellis quants generally are slower during TG given likely compute bottleneck if running on CPU, but if it is all you can fit then well...
<details>
<summary>π Secret Recipe</summary>
```bash
#!/usr/bin/env bash
custom="
## Attention [0-60] (GPU)
blk\..*\.attn_k_b\.weight=q8_0
blk\..*\.attn_v_b\.weight=q8_0
# Balance of attn tensors
blk\..*\.attn_kv_a_mqa\.weight=q8_0
blk\..*\.attn_q_a\.weight=q8_0
blk\..*\.attn_q_b\.weight=q8_0
blk\..*\.attn_output\.weight=q8_0
## First Single Dense Layer [0] (GPU)
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
## Shared Expert [1-60] (GPU)
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
## Routed Experts [1-60] (CPU)
blk\..*\.ffn_down_exps\.weight=iq1_kt
blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N ${SOCKET} -m ${SOCKET} \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/imatrix-Kimi-K2-Thinking-Q8_0-Q4_0.dat \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/-384x14B-BF16-00001-of-00046.gguf \
/mnt/data/models/ubergarm/Kimi-K2-Thinking-GGUF/Kimi-K2-Thinking-IQ1_KT.gguf \
IQ1_KT \
128
```
</details>
## Quick Start
You will want to override the template given they patched the original template here: https://huggingface.co/moonshotai/Kimi-K2-Thinking/blob/main/chat_template.jinja
You can do stuff like `--jinja --chat-template-file ./my-custom-template.jinja`.
You will also need to pass `--special` for it to output `<think>` and` </think>` tags correctly depending on endpoint and client used, thanks [u/Melodic-Network4374](https://www.reddit.com/r/LocalLLaMA/comments/1oqo57j/comment/nnpqxjx/) but note it will then also print out `<|im_end|>` so you can set your client to use that as a stop string.
```bash
# Example running Hybrid CPU+GPU(s) on ik_llama.cpp
./build/bin/llama-server \
--model "$model"\
--alias ubergarm/Kimi-K2-Thinking-GGUF \
--ctx-size 32768 \
-ctk q8_0 \
-mla 3 \
-ngl 99 \
-ot "blk\.(1|2|3)\.ffn_.*=CUDA0" \
-ot "blk\.(4|5|6)\.ffn_.*=CUDA1" \
-ot exps=CPU \
--parallel 1 \
--threads 96 \
--threads-batch 128 \
--host 127.0.0.1 \
--port 8080 \
--no-mmap \
--jinja \
--chat-template-file updatedChatTemplate.jinja \
--special
# Example running mainline llama.cpp
# remove `-mla 3` from commands and you should be :gucci:
```
If no GPU(s), just remove -ngl and -ot lines.
If you don't have enough RAM+VRAM, remove `--no-mmap` to mmap() "troll rig" it paging weights read-only off of disk for a couple tok/sec maybe depending.
Adjust `--threads` and `--threds-batch` as needed. For smaller CPUs I recommend setting them both the same equal to the number of physical cores. For an amd 9950x that would be `-t 16` for example. Experiment on larger rigs especially with multiple socket NUMA considerations (avoid cross-NUMA memory access if possible).
With ik_llama.cpp you can get some extra VRAM by using `-amb 512` to fix the size of the MLA computation buffers. (only works on models with MLA style attention like Kimi-K2 and DeepSeek)
## References
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
* [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)
* [ubergarm-imatrix-calibration-corpus-v02.txt](https://gist.github.com/ubergarm/edfeb3ff9c6ec8b49e88cdf627b0711a?permalink_comment_id=5682584#gistcomment-5682584)
* [moonshotai/Kimi-K2-Thinking/discussions/2](https://huggingface.co/moonshotai/Kimi-K2-Thinking/discussions/2)
* [vllm-project/compressed-tensors/issues/511](https://github.com/vllm-project/compressed-tensors/issues/511)
* [llama.cpp PR#17069](https://github.com/ggml-org/llama.cpp/pull/17069#issuecomment-3500870165)
|