--- quantized_by: ubergarm pipeline_tag: text-generation base_model: zai-org/GLM-4.5 license: mit base_model_relation: quantized tags: - imatrix - conversational - ik_llama.cpp --- ## `ik_llama.cpp` imatrix Quantizations of zai-org/GLM-4.5 This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc! *NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants. Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP with Windows builds for CUDA 12.9. Also check for [Windows builds by Thireus here.](https://github.com/Thireus/ik_llama.cpp/releases) which have been CUDA 12.8. These quants provide best in class perplexity for the given memory footprint. ## Big Thanks Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)! **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!! Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models! ## Quant Collection Perplexity computed against *wiki.test.raw*. Ahh jeeze the Perplexity not well behaved, pretty funny the IQ5_K has the "baseline" perplexity oof... I ran some quick KLD comparisons as well which show how much the smaller quants deviate from the original BF16 outputs with the `Cor(ln(PPL(Q)), ln(PPL(base)))` metric: | Quant | `Cor(ln(PPL(Q)), ln(PPL(base)))` | | --- | --- | | BF16 | Baseline | | Q8_0 | 99.90% | | IQ5_K | 99.85% | | IQ4_K | 99.78% | | IQ4_KSS| 99.59% | | IQ3_KT | 99.33% | | IQ2_KL | 98.87% | | IQ2_KS | 98.11% | | IQ1_KT | 96.52% | ![Perplexity Chart](images/perplexity.png "Chart showing Perplexity improving as BPW increases.") These first two are just test quants for baseline perplexity comparison: * `BF16` 667.598 GiB (16.003 BPW) - Final estimate: PPL = 3.1788 +/- 0.01790 * `Q8_0` 354.794 GiB (8.505 BPW) - Final estimate: PPL = 3.1746 +/- 0.01784 ## IQ5_K 250.296 GiB (6.000 BPW) Final estimate: PPL = 3.1690 +/- 0.01779
👈 Secret Recipe ```bash #/usr/bin/env bash custom=" # 93 Repeating Layers [0-92] # Attention blk\..*\.attn_q.*=q8_0 blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=q8_0 # First 3 Dense Layers [0-2] blk\..*\.ffn_down\.weight=q8_0 blk\..*\.ffn_(gate|up)\.weight=q8_0 # Shared Expert Layers [3-92] blk\..*\.ffn_down_shexp\.weight=q8_0 blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0 # Routed Experts Layers [3-92] blk\..*\.ffn_down_exps\.weight=iq6_k blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k # NextN MTP Layer [92] blk\..*\.nextn\.embed_tokens\.weight=iq6_k blk\..*\.nextn\.shared_head_head\.weight=iq6_k blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq6_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ5_K.gguf \ IQ5_K \ 192 ```
## IQ4_K 205.756 GiB (4.932 BPW) Final estimate: PPL = 3.2189 +/- 0.01818
👈 Secret Recipe ```bash #/usr/bin/env bash custom=" # 93 Repeating Layers [0-92] # Attention blk\..*\.attn_q.*=iq6_k blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq6_k # First 3 Dense Layers [0-2] blk\..*\.ffn_down\.weight=q8_0 blk\..*\.ffn_(gate|up)\.weight=iq6_k # Shared Expert Layers [3-92] blk\..*\.ffn_down_shexp\.weight=q8_0 blk\..*\.ffn_(gate|up)_shexp\.weight=iq6_k # Routed Experts Layers [3-92] blk\..*\.ffn_down_exps\.weight=iq5_k blk\..*\.ffn_(gate|up)_exps\.weight=iq4_k # NextN MTP Layer [92] blk\..*\.nextn\.embed_tokens\.weight=iq5_k blk\..*\.nextn\.shared_head_head\.weight=iq5_k blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ4_K.gguf \ IQ4_K \ 192 ```
## IQ4_KSS 173.726 GiB (4.164 BPW) Final estimate: PPL = 3.3261 +/- 0.01899
👈 Secret Recipe ```bash #/usr/bin/env bash custom=" # 93 Repeating Layers [0-92] # Attention blk\.(0|1|2)\.attn_q.*=q8_0 blk\.(0|1|2)\.attn_k.*=q8_0 blk\.(0|1|2)\.attn_v.*=q8_0 blk\.(0|1|2)\.attn_output.*=q8_0 blk\..*\.attn_q.*=iq5_ks blk\..*\.attn_k.*=iq6_k blk\..*\.attn_v.*=iq6_k blk\..*\.attn_output.*=iq5_ks # First 3 Dense Layers [0-2] blk\..*\.ffn_down\.weight=iq5_ks blk\..*\.ffn_(gate|up)\.weight=iq4_ks # Shared Expert Layers [3-92] blk\..*\.ffn_down_shexp\.weight=iq5_ks blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_ks # Routed Experts Layers [3-92] blk\..*\.ffn_down_exps\.weight=iq4_ks blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss # NextN MTP Layer [92] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 1 -m 1 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ4_KSS.gguf \ IQ4_KSS \ 192 ```
## IQ3_KT 147.565 GiB (3.537 BPW) Final estimate: PPL = 3.4369 +/- 0.01975 Designed for Dual RTX 6000 Pro Blackwell 192GB VRAM full offload.
👈 Secret Recipe ```bash #!/usr/bin/env bash custom=" # 93 Repeating Layers [0-92] # Attention blk\.(0|1|2)\.attn_q.*=q8_0 blk\.(0|1|2)\.attn_k.*=q8_0 blk\.(0|1|2)\.attn_v.*=q8_0 blk\.(0|1|2)\.attn_output.*=q8_0 blk\..*\.attn_q.*=iq5_ks blk\..*\.attn_k.*=q8_0 blk\..*\.attn_v.*=q8_0 blk\..*\.attn_output.*=iq5_ks # First 3 Dense Layers [0-2] blk\..*\.ffn_down\.weight=iq5_ks blk\..*\.ffn_(gate|up)\.weight=iq4_ks # Shared Expert Layers [3-92] blk\..*\.ffn_down_shexp\.weight=iq5_ks blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_ks # Routed Experts Layers [3-92] blk\..*\.ffn_down_exps\.weight=iq4_kss blk\..*\.ffn_(gate|up)_exps\.weight=iq3_kt # NextN MTP Layer [92] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 1 -m 1 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ3_KT.gguf \ IQ3_KT \ 192 ```
## IQ2_KL 127.746 GiB (3.062 BPW) Final estimate: PPL = 3.7569 +/- 0.02217
👈 Secret Recipe ```bash #/usr/bin/env bash custom=" # 93 Repeating Layers [0-92] # Attention blk\..*\.attn_q.*=iq5_ks blk\..*\.attn_k.*=iq5_ks blk\..*\.attn_v.*=iq5_ks blk\..*\.attn_output.*=iq5_ks # First 3 Dense Layers [0-2] blk\..*\.ffn_down\.weight=iq5_ks blk\..*\.ffn_(gate|up)\.weight=iq4_ks # Shared Expert Layers [3-92] blk\..*\.ffn_down_shexp\.weight=iq5_ks blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_ks # Routed Experts Layers [3-92] blk\..*\.ffn_down_exps\.weight=iq3_k blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl # NextN MTP Layer [92] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 1 -m 1 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ2_KL.gguf \ IQ2_KL \ 192 ```
## IQ2_KS 111.404 GiB (2.671 BPW) Final estimate: PPL = 4.3196 +/- 0.02652
👈 Secret Recipe Used PR624 https://github.com/ikawrakow/ik_llama.cpp/pull/624 ```bash custom=" #/usr/bin/env bash # 93 Repeating Layers [0-92] # Attention blk\..*\.attn_q.*=iq5_ks blk\..*\.attn_k.*=iq5_ks blk\..*\.attn_v.*=iq5_ks blk\..*\.attn_output.*=iq5_ks # First 3 Dense Layers [0-2] blk\..*\.ffn_down\.weight=iq5_ks blk\..*\.ffn_(gate|up)\.weight=iq4_ks # Shared Expert Layers [3-92] blk\..*\.ffn_down_shexp\.weight=iq5_ks blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_ks # Routed Experts Layers [3-92] blk\..*\.ffn_down_exps\.weight=iq3_ks blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks # NextN MTP Layer [92] blk\..*\.nextn\.embed_tokens\.weight=iq5_ks blk\..*\.nextn\.shared_head_head\.weight=iq5_ks blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 1 -m 1 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ2_KS.gguf \ IQ2_KS \ 192 ```
## IQ1_KT 83.827 GiB (2.009 BPW) Final estimate: PPL = Final estimate: PPL = 5.3270 +/- 0.03442 *Good luck everybody!* 😅
👈 Secret Recipe ```bash #/usr/bin/env bash custom=" # 93 Repeating Layers [0-92] # Attention blk\..*\.attn_q.*=iq4_kt blk\..*\.attn_k.*=iq4_kt blk\..*\.attn_v.*=iq4_kt blk\..*\.attn_output.*=iq4_kt # First 3 Dense Layers [0-2] blk\..*\.ffn_down\.weight=iq4_kt blk\..*\.ffn_(gate|up)\.weight=iq4_kt # Shared Expert Layers [3-92] blk\..*\.ffn_down_shexp\.weight=iq4_kt blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_kt # Routed Experts Layers [3-92] blk\..*\.ffn_down_exps\.weight=iq2_kt blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt # NextN MTP Layer [92] blk\..*\.nextn\.embed_tokens\.weight=iq4_kt blk\..*\.nextn\.shared_head_head\.weight=iq4_kt blk\..*\.nextn\.eh_proj\.weight=q8_0 # Non-Repeating Layers token_embd\.weight=iq4_k output\.weight=iq6_k " custom=$( echo "$custom" | grep -v '^#' | \ sed -Ez 's:\n+:,:g;s:,$::;s:^,::' ) numactl -N 0 -m 0 \ ./build/bin/llama-quantize \ --custom-q "$custom" \ --imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \ /mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ1_KT.gguf \ IQ1_KT \ 192 ```
## Quick Start If you want to disable thinking, add `/nothink` (correct, no underscore) at the *end* of your prompt. ```bash # Clone and checkout $ git clone https://github.com/ikawrakow/ik_llama.cpp $ cd ik_llama.cpp # Build for hybrid CPU+CUDA $ cmake -B build -DCMAKE_BUILD_TYPE=Release -DGGML_CUDA=ON -DGGML_BLAS=OFF -DGGML_SCHED_MAX_COPIES=1 $ cmake --build build --config Release -j $(nproc) # Run API server $ ./build/bin/llama-server \ --model GLM-4.5-IQ4_KSS-00001-of-00004.gguf \ --alias ubergarm/GLM-4.5-IQ4_KSS \ --ctx-size 32768 \ -fa -fmoe \ -ctk q8_0 -ctv q8_0 \ -ub 4096 -b 4096 \ -ngl 99 \ -ot exps=CPU \ --parallel 1 \ --threads 8 \ --host 127.0.0.1 \ --port 8080 \ --no-mmap ``` ## References * [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp) * [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258) * [ubergarm-imatrix-calibration-corpus-v02.txt](https://gist.github.com/ubergarm/edfeb3ff9c6ec8b49e88cdf627b0711a?permalink_comment_id=5682584#gistcomment-5682584) * [Thireus/GLM-4.5-THIREUS-BF16-SPECIAL_SPLIT](https://huggingface.co/Thireus/GLM-4.5-THIREUS-BF16-SPECIAL_SPLIT/tree/main) * [Closed unused ik_llama.cpp PR discussions](https://github.com/ikawrakow/ik_llama.cpp/pull/662#issuecomment-3145001132) * [Mainline llama.cpp Draft PR14939](https://github.com/ggml-org/llama.cpp/pull/14939) * [ik_llama.cpp GLM-4.5 MoE PR668](https://github.com/ikawrakow/ik_llama.cpp/pull/668)