---
quantized_by: ubergarm
pipeline_tag: text-generation
base_model: zai-org/GLM-4.5
license: mit
base_model_relation: quantized
tags:
- imatrix
- conversational
- ik_llama.cpp
---
## `ik_llama.cpp` imatrix Quantizations of zai-org/GLM-4.5
This quant collection **REQUIRES** [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp/) fork to support the ik's latest SOTA quants and optimizations! Do **not** download these big files and expect them to run on mainline vanilla llama.cpp, ollama, LM Studio, KoboldCpp, etc!
*NOTE* `ik_llama.cpp` can also run your existing GGUFs from bartowski, unsloth, mradermacher, etc if you want to try it out before downloading my quants.
Some of ik's new quants are supported with [Nexesenex/croco.cpp](https://github.com/Nexesenex/croco.cpp) fork of KoboldCPP with Windows builds for CUDA 12.9. Also check for [Windows builds by Thireus here.](https://github.com/Thireus/ik_llama.cpp/releases) which have been CUDA 12.8.
These quants provide best in class perplexity for the given memory footprint.
## Big Thanks
Shout out to Wendell and the **Level1Techs** crew, the community [Forums](https://forum.level1techs.com/t/deepseek-deep-dive-r1-at-home/225826), [YouTube Channel](https://www.youtube.com/@Level1Techs)! **BIG thanks** for providing **BIG hardware** expertise and access to run these experiments and make these great quants available to the community!!!
Also thanks to all the folks in the quanting and inferencing community on [BeaverAI Club Discord](https://huggingface.co/BeaverAI) and on [r/LocalLLaMA](https://www.reddit.com/r/LocalLLaMA/) for tips and tricks helping each other run, test, and benchmark all the fun new models!
## Quant Collection
Perplexity computed against *wiki.test.raw*.
Ahh jeeze the Perplexity not well behaved, pretty funny the IQ5_K has the "baseline" perplexity oof...
I ran some quick KLD comparisons as well which show how much the smaller quants deviate from the original BF16 outputs with the `Cor(ln(PPL(Q)), ln(PPL(base)))` metric:
| Quant | `Cor(ln(PPL(Q)), ln(PPL(base)))` |
| --- | --- |
| BF16 | Baseline |
| Q8_0 | 99.90% |
| IQ5_K | 99.85% |
| IQ4_K | 99.78% |
| IQ4_KSS| 99.59% |
| IQ3_KT | 99.33% |
| IQ2_KL | 98.87% |
| IQ2_KS | 98.11% |
| IQ1_KT | 96.52% |

These first two are just test quants for baseline perplexity comparison:
* `BF16` 667.598 GiB (16.003 BPW)
- Final estimate: PPL = 3.1788 +/- 0.01790
* `Q8_0` 354.794 GiB (8.505 BPW)
- Final estimate: PPL = 3.1746 +/- 0.01784
## IQ5_K 250.296 GiB (6.000 BPW)
Final estimate: PPL = 3.1690 +/- 0.01779
👈 Secret Recipe
```bash
#/usr/bin/env bash
custom="
# 93 Repeating Layers [0-92]
# Attention
blk\..*\.attn_q.*=q8_0
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=q8_0
# First 3 Dense Layers [0-2]
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=q8_0
# Shared Expert Layers [3-92]
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=q8_0
# Routed Experts Layers [3-92]
blk\..*\.ffn_down_exps\.weight=iq6_k
blk\..*\.ffn_(gate|up)_exps\.weight=iq5_k
# NextN MTP Layer [92]
blk\..*\.nextn\.embed_tokens\.weight=iq6_k
blk\..*\.nextn\.shared_head_head\.weight=iq6_k
blk\..*\.nextn\.eh_proj\.weight=q8_0
# Non-Repeating Layers
token_embd\.weight=iq6_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ5_K.gguf \
IQ5_K \
192
```
## IQ4_K 205.756 GiB (4.932 BPW)
Final estimate: PPL = 3.2189 +/- 0.01818
👈 Secret Recipe
```bash
#/usr/bin/env bash
custom="
# 93 Repeating Layers [0-92]
# Attention
blk\..*\.attn_q.*=iq6_k
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=iq6_k
# First 3 Dense Layers [0-2]
blk\..*\.ffn_down\.weight=q8_0
blk\..*\.ffn_(gate|up)\.weight=iq6_k
# Shared Expert Layers [3-92]
blk\..*\.ffn_down_shexp\.weight=q8_0
blk\..*\.ffn_(gate|up)_shexp\.weight=iq6_k
# Routed Experts Layers [3-92]
blk\..*\.ffn_down_exps\.weight=iq5_k
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_k
# NextN MTP Layer [92]
blk\..*\.nextn\.embed_tokens\.weight=iq5_k
blk\..*\.nextn\.shared_head_head\.weight=iq5_k
blk\..*\.nextn\.eh_proj\.weight=q8_0
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ4_K.gguf \
IQ4_K \
192
```
## IQ4_KSS 173.726 GiB (4.164 BPW)
Final estimate: PPL = 3.3261 +/- 0.01899
👈 Secret Recipe
```bash
#/usr/bin/env bash
custom="
# 93 Repeating Layers [0-92]
# Attention
blk\.(0|1|2)\.attn_q.*=q8_0
blk\.(0|1|2)\.attn_k.*=q8_0
blk\.(0|1|2)\.attn_v.*=q8_0
blk\.(0|1|2)\.attn_output.*=q8_0
blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=iq6_k
blk\..*\.attn_v.*=iq6_k
blk\..*\.attn_output.*=iq5_ks
# First 3 Dense Layers [0-2]
blk\..*\.ffn_down\.weight=iq5_ks
blk\..*\.ffn_(gate|up)\.weight=iq4_ks
# Shared Expert Layers [3-92]
blk\..*\.ffn_down_shexp\.weight=iq5_ks
blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_ks
# Routed Experts Layers [3-92]
blk\..*\.ffn_down_exps\.weight=iq4_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq4_kss
# NextN MTP Layer [92]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 1 -m 1 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ4_KSS.gguf \
IQ4_KSS \
192
```
## IQ3_KT 147.565 GiB (3.537 BPW)
Final estimate: PPL = 3.4369 +/- 0.01975
Designed for Dual RTX 6000 Pro Blackwell 192GB VRAM full offload.
👈 Secret Recipe
```bash
#!/usr/bin/env bash
custom="
# 93 Repeating Layers [0-92]
# Attention
blk\.(0|1|2)\.attn_q.*=q8_0
blk\.(0|1|2)\.attn_k.*=q8_0
blk\.(0|1|2)\.attn_v.*=q8_0
blk\.(0|1|2)\.attn_output.*=q8_0
blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=q8_0
blk\..*\.attn_v.*=q8_0
blk\..*\.attn_output.*=iq5_ks
# First 3 Dense Layers [0-2]
blk\..*\.ffn_down\.weight=iq5_ks
blk\..*\.ffn_(gate|up)\.weight=iq4_ks
# Shared Expert Layers [3-92]
blk\..*\.ffn_down_shexp\.weight=iq5_ks
blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_ks
# Routed Experts Layers [3-92]
blk\..*\.ffn_down_exps\.weight=iq4_kss
blk\..*\.ffn_(gate|up)_exps\.weight=iq3_kt
# NextN MTP Layer [92]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 1 -m 1 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ3_KT.gguf \
IQ3_KT \
192
```
## IQ2_KL 127.746 GiB (3.062 BPW)
Final estimate: PPL = 3.7569 +/- 0.02217
👈 Secret Recipe
```bash
#/usr/bin/env bash
custom="
# 93 Repeating Layers [0-92]
# Attention
blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks
blk\..*\.attn_output.*=iq5_ks
# First 3 Dense Layers [0-2]
blk\..*\.ffn_down\.weight=iq5_ks
blk\..*\.ffn_(gate|up)\.weight=iq4_ks
# Shared Expert Layers [3-92]
blk\..*\.ffn_down_shexp\.weight=iq5_ks
blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_ks
# Routed Experts Layers [3-92]
blk\..*\.ffn_down_exps\.weight=iq3_k
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_kl
# NextN MTP Layer [92]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 1 -m 1 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ2_KL.gguf \
IQ2_KL \
192
```
## IQ2_KS 111.404 GiB (2.671 BPW)
Final estimate: PPL = 4.3196 +/- 0.02652
👈 Secret Recipe
Used PR624 https://github.com/ikawrakow/ik_llama.cpp/pull/624
```bash
custom="
#/usr/bin/env bash
# 93 Repeating Layers [0-92]
# Attention
blk\..*\.attn_q.*=iq5_ks
blk\..*\.attn_k.*=iq5_ks
blk\..*\.attn_v.*=iq5_ks
blk\..*\.attn_output.*=iq5_ks
# First 3 Dense Layers [0-2]
blk\..*\.ffn_down\.weight=iq5_ks
blk\..*\.ffn_(gate|up)\.weight=iq4_ks
# Shared Expert Layers [3-92]
blk\..*\.ffn_down_shexp\.weight=iq5_ks
blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_ks
# Routed Experts Layers [3-92]
blk\..*\.ffn_down_exps\.weight=iq3_ks
blk\..*\.ffn_(gate|up)_exps\.weight=iq2_ks
# NextN MTP Layer [92]
blk\..*\.nextn\.embed_tokens\.weight=iq5_ks
blk\..*\.nextn\.shared_head_head\.weight=iq5_ks
blk\..*\.nextn\.eh_proj\.weight=q8_0
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 1 -m 1 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ2_KS.gguf \
IQ2_KS \
192
```
## IQ1_KT 83.827 GiB (2.009 BPW)
Final estimate: PPL = Final estimate: PPL = 5.3270 +/- 0.03442
*Good luck everybody!* 😅
👈 Secret Recipe
```bash
#/usr/bin/env bash
custom="
# 93 Repeating Layers [0-92]
# Attention
blk\..*\.attn_q.*=iq4_kt
blk\..*\.attn_k.*=iq4_kt
blk\..*\.attn_v.*=iq4_kt
blk\..*\.attn_output.*=iq4_kt
# First 3 Dense Layers [0-2]
blk\..*\.ffn_down\.weight=iq4_kt
blk\..*\.ffn_(gate|up)\.weight=iq4_kt
# Shared Expert Layers [3-92]
blk\..*\.ffn_down_shexp\.weight=iq4_kt
blk\..*\.ffn_(gate|up)_shexp\.weight=iq4_kt
# Routed Experts Layers [3-92]
blk\..*\.ffn_down_exps\.weight=iq2_kt
blk\..*\.ffn_(gate|up)_exps\.weight=iq1_kt
# NextN MTP Layer [92]
blk\..*\.nextn\.embed_tokens\.weight=iq4_kt
blk\..*\.nextn\.shared_head_head\.weight=iq4_kt
blk\..*\.nextn\.eh_proj\.weight=q8_0
# Non-Repeating Layers
token_embd\.weight=iq4_k
output\.weight=iq6_k
"
custom=$(
echo "$custom" | grep -v '^#' | \
sed -Ez 's:\n+:,:g;s:,$::;s:^,::'
)
numactl -N 0 -m 0 \
./build/bin/llama-quantize \
--custom-q "$custom" \
--imatrix /mnt/raid/models/ubergarm/GLM-4.5-GGUF/imatrix-GLM-4.5-BF16.dat \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-160x21B-4.5-BF16-00001-of-00015.gguf \
/mnt/raid/models/ubergarm/GLM-4.5-GGUF/GLM-4.5-IQ1_KT.gguf \
IQ1_KT \
192
```
## Quick Start
If you want to disable thinking, add `/nothink` (correct, no underscore) at the *end* of your prompt.
```bash
# Clone and checkout
$ git clone https://github.com/ikawrakow/ik_llama.cpp
$ cd ik_llama.cpp
# Build for hybrid CPU+CUDA
$ cmake -B build -DCMAKE_BUILD_TYPE=Release -DGGML_CUDA=ON -DGGML_BLAS=OFF -DGGML_SCHED_MAX_COPIES=1
$ cmake --build build --config Release -j $(nproc)
# Run API server
$ ./build/bin/llama-server \
--model GLM-4.5-IQ4_KSS-00001-of-00004.gguf \
--alias ubergarm/GLM-4.5-IQ4_KSS \
--ctx-size 32768 \
-fa -fmoe \
-ctk q8_0 -ctv q8_0 \
-ub 4096 -b 4096 \
-ngl 99 \
-ot exps=CPU \
--parallel 1 \
--threads 8 \
--host 127.0.0.1 \
--port 8080 \
--no-mmap
```
## References
* [ik_llama.cpp](https://github.com/ikawrakow/ik_llama.cpp)
* [Getting Started Guide (already out of date lol)](https://github.com/ikawrakow/ik_llama.cpp/discussions/258)
* [ubergarm-imatrix-calibration-corpus-v02.txt](https://gist.github.com/ubergarm/edfeb3ff9c6ec8b49e88cdf627b0711a?permalink_comment_id=5682584#gistcomment-5682584)
* [Thireus/GLM-4.5-THIREUS-BF16-SPECIAL_SPLIT](https://huggingface.co/Thireus/GLM-4.5-THIREUS-BF16-SPECIAL_SPLIT/tree/main)
* [Closed unused ik_llama.cpp PR discussions](https://github.com/ikawrakow/ik_llama.cpp/pull/662#issuecomment-3145001132)
* [Mainline llama.cpp Draft PR14939](https://github.com/ggml-org/llama.cpp/pull/14939)
* [ik_llama.cpp GLM-4.5 MoE PR668](https://github.com/ikawrakow/ik_llama.cpp/pull/668)