Training in progress, step 30
Browse files- 1_Pooling/config.json +10 -0
- README.md +637 -0
- config.json +24 -0
- config_sentence_transformers.json +10 -0
- emissions.csv +3 -0
- model.safetensors +3 -0
- modules.json +20 -0
- runs/Jun05_13-21-55_Tom/events.out.tfevents.1717586522.Tom.11064.0 +3 -0
- runs/Jun05_13-58-55_Tom/events.out.tfevents.1717588742.Tom.10892.0 +3 -0
- runs/Jun05_14-24-25_Tom/events.out.tfevents.1717590271.Tom.22032.0 +3 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +51 -0
- tokenizer.json +0 -0
- tokenizer_config.json +65 -0
- training_args.bin +3 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 768,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,637 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
language:
|
| 3 |
+
- en
|
| 4 |
+
license: apache-2.0
|
| 5 |
+
library_name: sentence-transformers
|
| 6 |
+
tags:
|
| 7 |
+
- sentence-transformers
|
| 8 |
+
- sentence-similarity
|
| 9 |
+
- feature-extraction
|
| 10 |
+
- generated_with_trainer
|
| 11 |
+
- dataset_size:100K<n<1M
|
| 12 |
+
- loss:SoftmaxLoss
|
| 13 |
+
- loss:CosineSimilarityLoss
|
| 14 |
+
base_model: microsoft/mpnet-base
|
| 15 |
+
datasets:
|
| 16 |
+
- nyu-mll/multi_nli
|
| 17 |
+
- stanfordnlp/snli
|
| 18 |
+
- mteb/stsbenchmark-sts
|
| 19 |
+
metrics:
|
| 20 |
+
- pearson_cosine
|
| 21 |
+
- spearman_cosine
|
| 22 |
+
- pearson_manhattan
|
| 23 |
+
- spearman_manhattan
|
| 24 |
+
- pearson_euclidean
|
| 25 |
+
- spearman_euclidean
|
| 26 |
+
- pearson_dot
|
| 27 |
+
- spearman_dot
|
| 28 |
+
- pearson_max
|
| 29 |
+
- spearman_max
|
| 30 |
+
widget:
|
| 31 |
+
- source_sentence: A taxi SUV drives past an urban construction site, as a man walks
|
| 32 |
+
down the street in the other direction.
|
| 33 |
+
sentences:
|
| 34 |
+
- The woman is walking down the street with high heels.
|
| 35 |
+
- A man is reading documents in a binder.
|
| 36 |
+
- A man is chasing an SUV that is going in the same direction as him.
|
| 37 |
+
- source_sentence: Young man running towards a tennis court while another is waiting
|
| 38 |
+
in the other side of the net.
|
| 39 |
+
sentences:
|
| 40 |
+
- The person is cooking a hamburger.
|
| 41 |
+
- A young man is running to grab a tennis ball.
|
| 42 |
+
- A woman is dancing near a fire.
|
| 43 |
+
- source_sentence: An asian woman sitting outside an outdoor market stall.
|
| 44 |
+
sentences:
|
| 45 |
+
- There are three workers
|
| 46 |
+
- A woman sits outdoors.
|
| 47 |
+
- Five women sit at a table.
|
| 48 |
+
- source_sentence: All the same methods of analysis that are used with spoken languages
|
| 49 |
+
apply successfully to signed languages.
|
| 50 |
+
sentences:
|
| 51 |
+
- One idea that's been going around at least since the 80s is that you can distinguish
|
| 52 |
+
between Holds and Moves.
|
| 53 |
+
- You only need two-dimensional trigonometry if you know the distances to the two
|
| 54 |
+
stars and their angular separation.
|
| 55 |
+
- A woman driving a car is talking to the man seated beside her.
|
| 56 |
+
- source_sentence: Rouen is the ancient center of Normandy's thriving textile industry,
|
| 57 |
+
and the place of Joan of Arc's martyrdom ' a national symbol of resistance to
|
| 58 |
+
tyranny.
|
| 59 |
+
sentences:
|
| 60 |
+
- The islands are part of France now instead of just colonies.
|
| 61 |
+
- Joan of Arc sacrificed her life at Rouen, which became an enduring symbol of opposition
|
| 62 |
+
to tyranny.
|
| 63 |
+
- I don't know how cold it got last night.
|
| 64 |
+
pipeline_tag: sentence-similarity
|
| 65 |
+
co2_eq_emissions:
|
| 66 |
+
emissions: 6.543912203095872
|
| 67 |
+
energy_consumed: 0.01683529336894555
|
| 68 |
+
source: codecarbon
|
| 69 |
+
training_type: fine-tuning
|
| 70 |
+
on_cloud: false
|
| 71 |
+
cpu_model: 13th Gen Intel(R) Core(TM) i7-13700K
|
| 72 |
+
ram_total_size: 31.777088165283203
|
| 73 |
+
hours_used: 0.067
|
| 74 |
+
hardware_used: 1 x NVIDIA GeForce RTX 3090
|
| 75 |
+
model-index:
|
| 76 |
+
- name: SentenceTransformer based on microsoft/mpnet-base
|
| 77 |
+
results:
|
| 78 |
+
- task:
|
| 79 |
+
type: semantic-similarity
|
| 80 |
+
name: Semantic Similarity
|
| 81 |
+
dataset:
|
| 82 |
+
name: sts dev
|
| 83 |
+
type: sts-dev
|
| 84 |
+
metrics:
|
| 85 |
+
- type: pearson_cosine
|
| 86 |
+
value: 0.8625771940364872
|
| 87 |
+
name: Pearson Cosine
|
| 88 |
+
- type: spearman_cosine
|
| 89 |
+
value: 0.8606717551154308
|
| 90 |
+
name: Spearman Cosine
|
| 91 |
+
- type: pearson_manhattan
|
| 92 |
+
value: 0.8638967614504363
|
| 93 |
+
name: Pearson Manhattan
|
| 94 |
+
- type: spearman_manhattan
|
| 95 |
+
value: 0.8633946128639698
|
| 96 |
+
name: Spearman Manhattan
|
| 97 |
+
- type: pearson_euclidean
|
| 98 |
+
value: 0.8611337271100419
|
| 99 |
+
name: Pearson Euclidean
|
| 100 |
+
- type: spearman_euclidean
|
| 101 |
+
value: 0.8606717551154308
|
| 102 |
+
name: Spearman Euclidean
|
| 103 |
+
- type: pearson_dot
|
| 104 |
+
value: 0.862577202108671
|
| 105 |
+
name: Pearson Dot
|
| 106 |
+
- type: spearman_dot
|
| 107 |
+
value: 0.8606717551154308
|
| 108 |
+
name: Spearman Dot
|
| 109 |
+
- type: pearson_max
|
| 110 |
+
value: 0.8638967614504363
|
| 111 |
+
name: Pearson Max
|
| 112 |
+
- type: spearman_max
|
| 113 |
+
value: 0.8633946128639698
|
| 114 |
+
name: Spearman Max
|
| 115 |
+
- task:
|
| 116 |
+
type: semantic-similarity
|
| 117 |
+
name: Semantic Similarity
|
| 118 |
+
dataset:
|
| 119 |
+
name: sts test
|
| 120 |
+
type: sts-test
|
| 121 |
+
metrics:
|
| 122 |
+
- type: pearson_cosine
|
| 123 |
+
value: 0.8121966861722953
|
| 124 |
+
name: Pearson Cosine
|
| 125 |
+
- type: spearman_cosine
|
| 126 |
+
value: 0.8064524624275264
|
| 127 |
+
name: Spearman Cosine
|
| 128 |
+
- type: pearson_manhattan
|
| 129 |
+
value: 0.8164566762295066
|
| 130 |
+
name: Pearson Manhattan
|
| 131 |
+
- type: spearman_manhattan
|
| 132 |
+
value: 0.8087376581901532
|
| 133 |
+
name: Spearman Manhattan
|
| 134 |
+
- type: pearson_euclidean
|
| 135 |
+
value: 0.8146700964672056
|
| 136 |
+
name: Pearson Euclidean
|
| 137 |
+
- type: spearman_euclidean
|
| 138 |
+
value: 0.8064524624275264
|
| 139 |
+
name: Spearman Euclidean
|
| 140 |
+
- type: pearson_dot
|
| 141 |
+
value: 0.8121966895185604
|
| 142 |
+
name: Pearson Dot
|
| 143 |
+
- type: spearman_dot
|
| 144 |
+
value: 0.8064524624275264
|
| 145 |
+
name: Spearman Dot
|
| 146 |
+
- type: pearson_max
|
| 147 |
+
value: 0.8164566762295066
|
| 148 |
+
name: Pearson Max
|
| 149 |
+
- type: spearman_max
|
| 150 |
+
value: 0.8087376581901532
|
| 151 |
+
name: Spearman Max
|
| 152 |
+
---
|
| 153 |
+
|
| 154 |
+
# SentenceTransformer based on microsoft/mpnet-base
|
| 155 |
+
|
| 156 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) on the [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli), [snli](https://huggingface.co/datasets/stanfordnlp/snli) and [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) datasets. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 157 |
+
|
| 158 |
+
## Model Details
|
| 159 |
+
|
| 160 |
+
### Model Description
|
| 161 |
+
- **Model Type:** Sentence Transformer
|
| 162 |
+
- **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) <!-- at revision 6996ce1e91bd2a9c7d7f61daec37463394f73f09 -->
|
| 163 |
+
- **Maximum Sequence Length:** 384 tokens
|
| 164 |
+
- **Output Dimensionality:** 768 tokens
|
| 165 |
+
- **Similarity Function:** Dot Product
|
| 166 |
+
- **Training Datasets:**
|
| 167 |
+
- [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli)
|
| 168 |
+
- [snli](https://huggingface.co/datasets/stanfordnlp/snli)
|
| 169 |
+
- [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts)
|
| 170 |
+
- **Language:** en
|
| 171 |
+
- **License:** apache-2.0
|
| 172 |
+
|
| 173 |
+
### Model Sources
|
| 174 |
+
|
| 175 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 176 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 177 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 178 |
+
|
| 179 |
+
### Full Model Architecture
|
| 180 |
+
|
| 181 |
+
```
|
| 182 |
+
SentenceTransformer(
|
| 183 |
+
(0): Transformer({'max_seq_length': 384, 'do_lower_case': False}) with Transformer model: MPNetModel
|
| 184 |
+
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 185 |
+
(2): Normalize()
|
| 186 |
+
)
|
| 187 |
+
```
|
| 188 |
+
|
| 189 |
+
## Usage
|
| 190 |
+
|
| 191 |
+
### Direct Usage (Sentence Transformers)
|
| 192 |
+
|
| 193 |
+
First install the Sentence Transformers library:
|
| 194 |
+
|
| 195 |
+
```bash
|
| 196 |
+
pip install -U sentence-transformers
|
| 197 |
+
```
|
| 198 |
+
|
| 199 |
+
Then you can load this model and run inference.
|
| 200 |
+
```python
|
| 201 |
+
from sentence_transformers import SentenceTransformer
|
| 202 |
+
|
| 203 |
+
# Download from the 🤗 Hub
|
| 204 |
+
model = SentenceTransformer("tomaarsen/mpnet-base-allnli")
|
| 205 |
+
# Run inference
|
| 206 |
+
sentences = [
|
| 207 |
+
"Rouen is the ancient center of Normandy's thriving textile industry, and the place of Joan of Arc's martyrdom ' a national symbol of resistance to tyranny.",
|
| 208 |
+
'Joan of Arc sacrificed her life at Rouen, which became an enduring symbol of opposition to tyranny.',
|
| 209 |
+
'The islands are part of France now instead of just colonies.',
|
| 210 |
+
]
|
| 211 |
+
embeddings = model.encode(sentences)
|
| 212 |
+
print(embeddings.shape)
|
| 213 |
+
# [3, 768]
|
| 214 |
+
|
| 215 |
+
# Get the similarity scores for the embeddings
|
| 216 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 217 |
+
print(similarities.shape)
|
| 218 |
+
# [3, 3]
|
| 219 |
+
```
|
| 220 |
+
|
| 221 |
+
<!--
|
| 222 |
+
### Direct Usage (Transformers)
|
| 223 |
+
|
| 224 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 225 |
+
|
| 226 |
+
</details>
|
| 227 |
+
-->
|
| 228 |
+
|
| 229 |
+
<!--
|
| 230 |
+
### Downstream Usage (Sentence Transformers)
|
| 231 |
+
|
| 232 |
+
You can finetune this model on your own dataset.
|
| 233 |
+
|
| 234 |
+
<details><summary>Click to expand</summary>
|
| 235 |
+
|
| 236 |
+
</details>
|
| 237 |
+
-->
|
| 238 |
+
|
| 239 |
+
<!--
|
| 240 |
+
### Out-of-Scope Use
|
| 241 |
+
|
| 242 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 243 |
+
-->
|
| 244 |
+
|
| 245 |
+
## Evaluation
|
| 246 |
+
|
| 247 |
+
### Metrics
|
| 248 |
+
|
| 249 |
+
#### Semantic Similarity
|
| 250 |
+
* Dataset: `sts-dev`
|
| 251 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 252 |
+
|
| 253 |
+
| Metric | Value |
|
| 254 |
+
|:-------------------|:-----------|
|
| 255 |
+
| pearson_cosine | 0.8626 |
|
| 256 |
+
| spearman_cosine | 0.8607 |
|
| 257 |
+
| pearson_manhattan | 0.8639 |
|
| 258 |
+
| spearman_manhattan | 0.8634 |
|
| 259 |
+
| pearson_euclidean | 0.8611 |
|
| 260 |
+
| spearman_euclidean | 0.8607 |
|
| 261 |
+
| pearson_dot | 0.8626 |
|
| 262 |
+
| **spearman_dot** | **0.8607** |
|
| 263 |
+
| pearson_max | 0.8639 |
|
| 264 |
+
| spearman_max | 0.8634 |
|
| 265 |
+
|
| 266 |
+
#### Semantic Similarity
|
| 267 |
+
* Dataset: `sts-test`
|
| 268 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 269 |
+
|
| 270 |
+
| Metric | Value |
|
| 271 |
+
|:--------------------|:-----------|
|
| 272 |
+
| pearson_cosine | 0.8122 |
|
| 273 |
+
| **spearman_cosine** | **0.8065** |
|
| 274 |
+
| pearson_manhattan | 0.8165 |
|
| 275 |
+
| spearman_manhattan | 0.8087 |
|
| 276 |
+
| pearson_euclidean | 0.8147 |
|
| 277 |
+
| spearman_euclidean | 0.8065 |
|
| 278 |
+
| pearson_dot | 0.8122 |
|
| 279 |
+
| spearman_dot | 0.8065 |
|
| 280 |
+
| pearson_max | 0.8165 |
|
| 281 |
+
| spearman_max | 0.8087 |
|
| 282 |
+
|
| 283 |
+
<!--
|
| 284 |
+
## Bias, Risks and Limitations
|
| 285 |
+
|
| 286 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 287 |
+
-->
|
| 288 |
+
|
| 289 |
+
<!--
|
| 290 |
+
### Recommendations
|
| 291 |
+
|
| 292 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 293 |
+
-->
|
| 294 |
+
|
| 295 |
+
## Training Details
|
| 296 |
+
|
| 297 |
+
### Training Datasets
|
| 298 |
+
|
| 299 |
+
#### multi_nli
|
| 300 |
+
|
| 301 |
+
* Dataset: [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co/datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
|
| 302 |
+
* Size: 392,702 training samples
|
| 303 |
+
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
| 304 |
+
* Approximate statistics based on the first 1000 samples:
|
| 305 |
+
| | premise | hypothesis | label |
|
| 306 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
| 307 |
+
| type | string | string | int |
|
| 308 |
+
| details | <ul><li>min: 4 tokens</li><li>mean: 26.95 tokens</li><li>max: 189 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 14.11 tokens</li><li>max: 49 tokens</li></ul> | <ul><li>0: ~34.30%</li><li>1: ~28.20%</li><li>2: ~37.50%</li></ul> |
|
| 309 |
+
* Samples:
|
| 310 |
+
| premise | hypothesis | label |
|
| 311 |
+
|:-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------|
|
| 312 |
+
| <code>Conceptually cream skimming has two basic dimensions - product and geography.</code> | <code>Product and geography are what make cream skimming work. </code> | <code>1</code> |
|
| 313 |
+
| <code>you know during the season and i guess at at your level uh you lose them to the next level if if they decide to recall the the parent team the Braves decide to call to recall a guy from triple A then a double A guy goes up to replace him and a single A guy goes up to replace him</code> | <code>You lose the things to the following level if the people recall.</code> | <code>0</code> |
|
| 314 |
+
| <code>One of our number will carry out your instructions minutely.</code> | <code>A member of my team will execute your orders with immense precision.</code> | <code>0</code> |
|
| 315 |
+
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
| 316 |
+
|
| 317 |
+
#### snli
|
| 318 |
+
|
| 319 |
+
* Dataset: [snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
|
| 320 |
+
* Size: 549,367 training samples
|
| 321 |
+
* Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
|
| 322 |
+
* Approximate statistics based on the first 1000 samples:
|
| 323 |
+
| | snli_premise | hypothesis | label |
|
| 324 |
+
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
| 325 |
+
| type | string | string | int |
|
| 326 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 17.38 tokens</li><li>max: 52 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 10.7 tokens</li><li>max: 31 tokens</li></ul> | <ul><li>0: ~33.40%</li><li>1: ~33.30%</li><li>2: ~33.30%</li></ul> |
|
| 327 |
+
* Samples:
|
| 328 |
+
| snli_premise | hypothesis | label |
|
| 329 |
+
|:--------------------------------------------------------------------|:---------------------------------------------------------------|:---------------|
|
| 330 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is training his horse for a competition.</code> | <code>1</code> |
|
| 331 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is at a diner, ordering an omelette.</code> | <code>2</code> |
|
| 332 |
+
| <code>A person on a horse jumps over a broken down airplane.</code> | <code>A person is outdoors, on a horse.</code> | <code>0</code> |
|
| 333 |
+
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
| 334 |
+
|
| 335 |
+
#### stsb
|
| 336 |
+
|
| 337 |
+
* Dataset: [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co/datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
|
| 338 |
+
* Size: 5,749 training samples
|
| 339 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 340 |
+
* Approximate statistics based on the first 1000 samples:
|
| 341 |
+
| | sentence1 | sentence2 | label |
|
| 342 |
+
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 343 |
+
| type | string | string | float |
|
| 344 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 10.0 tokens</li><li>max: 28 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 9.95 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.54</li><li>max: 1.0</li></ul> |
|
| 345 |
+
* Samples:
|
| 346 |
+
| sentence1 | sentence2 | label |
|
| 347 |
+
|:-----------------------------------------------------------|:----------------------------------------------------------------------|:------------------|
|
| 348 |
+
| <code>A plane is taking off.</code> | <code>An air plane is taking off.</code> | <code>1.0</code> |
|
| 349 |
+
| <code>A man is playing a large flute.</code> | <code>A man is playing a flute.</code> | <code>0.76</code> |
|
| 350 |
+
| <code>A man is spreading shreded cheese on a pizza.</code> | <code>A man is spreading shredded cheese on an uncooked pizza.</code> | <code>0.76</code> |
|
| 351 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
| 352 |
+
```json
|
| 353 |
+
{
|
| 354 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
| 355 |
+
}
|
| 356 |
+
```
|
| 357 |
+
|
| 358 |
+
### Evaluation Datasets
|
| 359 |
+
|
| 360 |
+
#### multi_nli
|
| 361 |
+
|
| 362 |
+
* Dataset: [multi_nli](https://huggingface.co/datasets/nyu-mll/multi_nli) at [da70db2](https://huggingface.co/datasets/nyu-mll/multi_nli/tree/da70db2af9d09693783c3320c4249840212ee221)
|
| 363 |
+
* Size: 100 evaluation samples
|
| 364 |
+
* Columns: <code>premise</code>, <code>hypothesis</code>, and <code>label</code>
|
| 365 |
+
* Approximate statistics based on the first 1000 samples:
|
| 366 |
+
| | premise | hypothesis | label |
|
| 367 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
| 368 |
+
| type | string | string | int |
|
| 369 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 27.67 tokens</li><li>max: 138 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 13.48 tokens</li><li>max: 27 tokens</li></ul> | <ul><li>0: ~35.00%</li><li>1: ~31.00%</li><li>2: ~34.00%</li></ul> |
|
| 370 |
+
* Samples:
|
| 371 |
+
| premise | hypothesis | label |
|
| 372 |
+
|:---------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------|:---------------|
|
| 373 |
+
| <code>The new rights are nice enough</code> | <code>Everyone really likes the newest benefits </code> | <code>1</code> |
|
| 374 |
+
| <code>This site includes a list of all award winners and a searchable database of Government Executive articles.</code> | <code>The Government Executive articles housed on the website are not able to be searched.</code> | <code>2</code> |
|
| 375 |
+
| <code>uh i don't know i i have mixed emotions about him uh sometimes i like him but at the same times i love to see somebody beat him</code> | <code>I like him for the most part, but would still enjoy seeing someone beat him.</code> | <code>0</code> |
|
| 376 |
+
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
| 377 |
+
|
| 378 |
+
#### snli
|
| 379 |
+
|
| 380 |
+
* Dataset: [snli](https://huggingface.co/datasets/stanfordnlp/snli) at [cdb5c3d](https://huggingface.co/datasets/stanfordnlp/snli/tree/cdb5c3d5eed6ead6e5a341c8e56e669bb666725b)
|
| 381 |
+
* Size: 9,842 evaluation samples
|
| 382 |
+
* Columns: <code>snli_premise</code>, <code>hypothesis</code>, and <code>label</code>
|
| 383 |
+
* Approximate statistics based on the first 1000 samples:
|
| 384 |
+
| | snli_premise | hypothesis | label |
|
| 385 |
+
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:-------------------------------------------------------------------|
|
| 386 |
+
| type | string | string | int |
|
| 387 |
+
| details | <ul><li>min: 6 tokens</li><li>mean: 18.44 tokens</li><li>max: 57 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 10.57 tokens</li><li>max: 25 tokens</li></ul> | <ul><li>0: ~33.10%</li><li>1: ~33.30%</li><li>2: ~33.60%</li></ul> |
|
| 388 |
+
* Samples:
|
| 389 |
+
| snli_premise | hypothesis | label |
|
| 390 |
+
|:-------------------------------------------------------------------|:---------------------------------------------------------------------------------------------------|:---------------|
|
| 391 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>The sisters are hugging goodbye while holding to go packages after just eating lunch.</code> | <code>1</code> |
|
| 392 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>Two woman are holding packages.</code> | <code>0</code> |
|
| 393 |
+
| <code>Two women are embracing while holding to go packages.</code> | <code>The men are fighting outside a deli.</code> | <code>2</code> |
|
| 394 |
+
* Loss: [<code>SoftmaxLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#softmaxloss)
|
| 395 |
+
|
| 396 |
+
#### stsb
|
| 397 |
+
|
| 398 |
+
* Dataset: [stsb](https://huggingface.co/datasets/mteb/stsbenchmark-sts) at [8913289](https://huggingface.co/datasets/mteb/stsbenchmark-sts/tree/8913289635987208e6e7c72789e4be2fe94b6abd)
|
| 399 |
+
* Size: 1,500 evaluation samples
|
| 400 |
+
* Columns: <code>sentence1</code>, <code>sentence2</code>, and <code>label</code>
|
| 401 |
+
* Approximate statistics based on the first 1000 samples:
|
| 402 |
+
| | sentence1 | sentence2 | label |
|
| 403 |
+
|:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------|
|
| 404 |
+
| type | string | string | float |
|
| 405 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 15.1 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 6 tokens</li><li>mean: 15.11 tokens</li><li>max: 53 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.47</li><li>max: 1.0</li></ul> |
|
| 406 |
+
* Samples:
|
| 407 |
+
| sentence1 | sentence2 | label |
|
| 408 |
+
|:--------------------------------------------------|:------------------------------------------------------|:------------------|
|
| 409 |
+
| <code>A man with a hard hat is dancing.</code> | <code>A man wearing a hard hat is dancing.</code> | <code>1.0</code> |
|
| 410 |
+
| <code>A young child is riding a horse.</code> | <code>A child is riding a horse.</code> | <code>0.95</code> |
|
| 411 |
+
| <code>A man is feeding a mouse to a snake.</code> | <code>The man is feeding a mouse to the snake.</code> | <code>1.0</code> |
|
| 412 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
| 413 |
+
```json
|
| 414 |
+
{
|
| 415 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
| 416 |
+
}
|
| 417 |
+
```
|
| 418 |
+
|
| 419 |
+
### Training Hyperparameters
|
| 420 |
+
#### Non-Default Hyperparameters
|
| 421 |
+
|
| 422 |
+
- `eval_strategy`: steps
|
| 423 |
+
- `per_device_train_batch_size`: 64
|
| 424 |
+
- `per_device_eval_batch_size`: 64
|
| 425 |
+
- `learning_rate`: 2e-05
|
| 426 |
+
- `num_train_epochs`: 1
|
| 427 |
+
- `warmup_ratio`: 0.1
|
| 428 |
+
- `seed`: 33
|
| 429 |
+
- `bf16`: True
|
| 430 |
+
- `load_best_model_at_end`: True
|
| 431 |
+
- `push_to_hub`: True
|
| 432 |
+
- `hub_model_id`: tomaarsen/mpnet-base-allnli
|
| 433 |
+
- `hub_private_repo`: True
|
| 434 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 435 |
+
|
| 436 |
+
#### All Hyperparameters
|
| 437 |
+
<details><summary>Click to expand</summary>
|
| 438 |
+
|
| 439 |
+
- `overwrite_output_dir`: False
|
| 440 |
+
- `do_predict`: False
|
| 441 |
+
- `eval_strategy`: steps
|
| 442 |
+
- `prediction_loss_only`: True
|
| 443 |
+
- `per_device_train_batch_size`: 64
|
| 444 |
+
- `per_device_eval_batch_size`: 64
|
| 445 |
+
- `per_gpu_train_batch_size`: None
|
| 446 |
+
- `per_gpu_eval_batch_size`: None
|
| 447 |
+
- `gradient_accumulation_steps`: 1
|
| 448 |
+
- `eval_accumulation_steps`: None
|
| 449 |
+
- `learning_rate`: 2e-05
|
| 450 |
+
- `weight_decay`: 0.0
|
| 451 |
+
- `adam_beta1`: 0.9
|
| 452 |
+
- `adam_beta2`: 0.999
|
| 453 |
+
- `adam_epsilon`: 1e-08
|
| 454 |
+
- `max_grad_norm`: 1.0
|
| 455 |
+
- `num_train_epochs`: 1
|
| 456 |
+
- `max_steps`: -1
|
| 457 |
+
- `lr_scheduler_type`: linear
|
| 458 |
+
- `lr_scheduler_kwargs`: {}
|
| 459 |
+
- `warmup_ratio`: 0.1
|
| 460 |
+
- `warmup_steps`: 0
|
| 461 |
+
- `log_level`: passive
|
| 462 |
+
- `log_level_replica`: warning
|
| 463 |
+
- `log_on_each_node`: True
|
| 464 |
+
- `logging_nan_inf_filter`: True
|
| 465 |
+
- `save_safetensors`: True
|
| 466 |
+
- `save_on_each_node`: False
|
| 467 |
+
- `save_only_model`: False
|
| 468 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 469 |
+
- `no_cuda`: False
|
| 470 |
+
- `use_cpu`: False
|
| 471 |
+
- `use_mps_device`: False
|
| 472 |
+
- `seed`: 33
|
| 473 |
+
- `data_seed`: None
|
| 474 |
+
- `jit_mode_eval`: False
|
| 475 |
+
- `use_ipex`: False
|
| 476 |
+
- `bf16`: True
|
| 477 |
+
- `fp16`: False
|
| 478 |
+
- `fp16_opt_level`: O1
|
| 479 |
+
- `half_precision_backend`: auto
|
| 480 |
+
- `bf16_full_eval`: False
|
| 481 |
+
- `fp16_full_eval`: False
|
| 482 |
+
- `tf32`: None
|
| 483 |
+
- `local_rank`: 0
|
| 484 |
+
- `ddp_backend`: None
|
| 485 |
+
- `tpu_num_cores`: None
|
| 486 |
+
- `tpu_metrics_debug`: False
|
| 487 |
+
- `debug`: []
|
| 488 |
+
- `dataloader_drop_last`: False
|
| 489 |
+
- `dataloader_num_workers`: 0
|
| 490 |
+
- `dataloader_prefetch_factor`: None
|
| 491 |
+
- `past_index`: -1
|
| 492 |
+
- `disable_tqdm`: False
|
| 493 |
+
- `remove_unused_columns`: True
|
| 494 |
+
- `label_names`: None
|
| 495 |
+
- `load_best_model_at_end`: True
|
| 496 |
+
- `ignore_data_skip`: False
|
| 497 |
+
- `fsdp`: []
|
| 498 |
+
- `fsdp_min_num_params`: 0
|
| 499 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 500 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 501 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 502 |
+
- `deepspeed`: None
|
| 503 |
+
- `label_smoothing_factor`: 0.0
|
| 504 |
+
- `optim`: adamw_torch
|
| 505 |
+
- `optim_args`: None
|
| 506 |
+
- `adafactor`: False
|
| 507 |
+
- `group_by_length`: False
|
| 508 |
+
- `length_column_name`: length
|
| 509 |
+
- `ddp_find_unused_parameters`: None
|
| 510 |
+
- `ddp_bucket_cap_mb`: None
|
| 511 |
+
- `ddp_broadcast_buffers`: False
|
| 512 |
+
- `dataloader_pin_memory`: True
|
| 513 |
+
- `dataloader_persistent_workers`: False
|
| 514 |
+
- `skip_memory_metrics`: True
|
| 515 |
+
- `use_legacy_prediction_loop`: False
|
| 516 |
+
- `push_to_hub`: True
|
| 517 |
+
- `resume_from_checkpoint`: None
|
| 518 |
+
- `hub_model_id`: tomaarsen/mpnet-base-allnli
|
| 519 |
+
- `hub_strategy`: every_save
|
| 520 |
+
- `hub_private_repo`: True
|
| 521 |
+
- `hub_always_push`: False
|
| 522 |
+
- `gradient_checkpointing`: False
|
| 523 |
+
- `gradient_checkpointing_kwargs`: None
|
| 524 |
+
- `include_inputs_for_metrics`: False
|
| 525 |
+
- `eval_do_concat_batches`: True
|
| 526 |
+
- `fp16_backend`: auto
|
| 527 |
+
- `push_to_hub_model_id`: None
|
| 528 |
+
- `push_to_hub_organization`: None
|
| 529 |
+
- `mp_parameters`:
|
| 530 |
+
- `auto_find_batch_size`: False
|
| 531 |
+
- `full_determinism`: False
|
| 532 |
+
- `torchdynamo`: None
|
| 533 |
+
- `ray_scope`: last
|
| 534 |
+
- `ddp_timeout`: 1800
|
| 535 |
+
- `torch_compile`: False
|
| 536 |
+
- `torch_compile_backend`: None
|
| 537 |
+
- `torch_compile_mode`: None
|
| 538 |
+
- `dispatch_batches`: None
|
| 539 |
+
- `split_batches`: None
|
| 540 |
+
- `include_tokens_per_second`: False
|
| 541 |
+
- `include_num_input_tokens_seen`: False
|
| 542 |
+
- `neftune_noise_alpha`: None
|
| 543 |
+
- `optim_target_modules`: None
|
| 544 |
+
- `batch_eval_metrics`: False
|
| 545 |
+
- `batch_sampler`: batch_sampler
|
| 546 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 547 |
+
|
| 548 |
+
</details>
|
| 549 |
+
|
| 550 |
+
### Training Logs
|
| 551 |
+
| Epoch | Step | Training Loss | stsb loss | snli loss | multi nli loss | sts-dev_spearman_dot | sts-test_spearman_cosine |
|
| 552 |
+
|:----------:|:-------:|:-------------:|:----------:|:----------:|:--------------:|:--------------------:|:------------------------:|
|
| 553 |
+
| 0.0370 | 10 | 0.8336 | - | - | - | - | - |
|
| 554 |
+
| 0.0741 | 20 | 0.8257 | - | - | - | - | - |
|
| 555 |
+
| 0.1111 | 30 | 0.6998 | 0.0736 | 1.0978 | 1.0961 | 0.6791 | - |
|
| 556 |
+
| 0.1481 | 40 | 0.7878 | - | - | - | - | - |
|
| 557 |
+
| 0.1852 | 50 | 0.7868 | - | - | - | - | - |
|
| 558 |
+
| 0.2222 | 60 | 0.6761 | 0.0528 | 1.0958 | 1.0963 | 0.8035 | - |
|
| 559 |
+
| 0.2593 | 70 | 0.7804 | - | - | - | - | - |
|
| 560 |
+
| 0.2963 | 80 | 0.7789 | - | - | - | - | - |
|
| 561 |
+
| 0.3333 | 90 | 0.6756 | 0.0390 | 1.0940 | 1.0962 | 0.8341 | - |
|
| 562 |
+
| 0.3704 | 100 | 0.7811 | - | - | - | - | - |
|
| 563 |
+
| 0.4074 | 110 | 0.775 | - | - | - | - | - |
|
| 564 |
+
| 0.4444 | 120 | 0.6721 | 0.0351 | 1.0932 | 1.0981 | 0.8413 | - |
|
| 565 |
+
| 0.4815 | 130 | 0.7794 | - | - | - | - | - |
|
| 566 |
+
| 0.5185 | 140 | 0.7764 | - | - | - | - | - |
|
| 567 |
+
| 0.5556 | 150 | 0.6705 | 0.0343 | 1.0906 | 1.0950 | 0.8485 | - |
|
| 568 |
+
| 0.5926 | 160 | 0.776 | - | - | - | - | - |
|
| 569 |
+
| 0.6296 | 170 | 0.7742 | - | - | - | - | - |
|
| 570 |
+
| 0.6667 | 180 | 0.6643 | 0.0326 | 1.0887 | 1.0927 | 0.8547 | - |
|
| 571 |
+
| 0.7037 | 190 | 0.7732 | - | - | - | - | - |
|
| 572 |
+
| 0.7407 | 200 | 0.7733 | - | - | - | - | - |
|
| 573 |
+
| 0.7778 | 210 | 0.6676 | 0.0318 | 1.0867 | 1.0912 | 0.8591 | - |
|
| 574 |
+
| 0.8148 | 220 | 0.7706 | - | - | - | - | - |
|
| 575 |
+
| 0.8519 | 230 | 0.7716 | - | - | - | - | - |
|
| 576 |
+
| **0.8889** | **240** | **0.6633** | **0.0302** | **1.0855** | **1.0889** | **0.8607** | **-** |
|
| 577 |
+
| 0.9259 | 250 | 0.7711 | - | - | - | - | - |
|
| 578 |
+
| 0.9630 | 260 | 0.7716 | - | - | - | - | - |
|
| 579 |
+
| 1.0 | 270 | 0.6644 | 0.0316 | 1.0852 | 1.0890 | 0.8607 | 0.8065 |
|
| 580 |
+
|
| 581 |
+
* The bold row denotes the saved checkpoint.
|
| 582 |
+
|
| 583 |
+
### Environmental Impact
|
| 584 |
+
Carbon emissions were measured using [CodeCarbon](https://github.com/mlco2/codecarbon).
|
| 585 |
+
- **Energy Consumed**: 0.017 kWh
|
| 586 |
+
- **Carbon Emitted**: 0.007 kg of CO2
|
| 587 |
+
- **Hours Used**: 0.067 hours
|
| 588 |
+
|
| 589 |
+
### Training Hardware
|
| 590 |
+
- **On Cloud**: No
|
| 591 |
+
- **GPU Model**: 1 x NVIDIA GeForce RTX 3090
|
| 592 |
+
- **CPU Model**: 13th Gen Intel(R) Core(TM) i7-13700K
|
| 593 |
+
- **RAM Size**: 31.78 GB
|
| 594 |
+
|
| 595 |
+
### Framework Versions
|
| 596 |
+
- Python: 3.11.6
|
| 597 |
+
- Sentence Transformers: 3.1.0.dev0
|
| 598 |
+
- Transformers: 4.41.2
|
| 599 |
+
- PyTorch: 2.3.0+cu121
|
| 600 |
+
- Accelerate: 0.30.1
|
| 601 |
+
- Datasets: 2.19.1
|
| 602 |
+
- Tokenizers: 0.19.1
|
| 603 |
+
|
| 604 |
+
## Citation
|
| 605 |
+
|
| 606 |
+
### BibTeX
|
| 607 |
+
|
| 608 |
+
#### Sentence Transformers and SoftmaxLoss
|
| 609 |
+
```bibtex
|
| 610 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 611 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 612 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 613 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 614 |
+
month = "11",
|
| 615 |
+
year = "2019",
|
| 616 |
+
publisher = "Association for Computational Linguistics",
|
| 617 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 618 |
+
}
|
| 619 |
+
```
|
| 620 |
+
|
| 621 |
+
<!--
|
| 622 |
+
## Glossary
|
| 623 |
+
|
| 624 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 625 |
+
-->
|
| 626 |
+
|
| 627 |
+
<!--
|
| 628 |
+
## Model Card Authors
|
| 629 |
+
|
| 630 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 631 |
+
-->
|
| 632 |
+
|
| 633 |
+
<!--
|
| 634 |
+
## Model Card Contact
|
| 635 |
+
|
| 636 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 637 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,24 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "microsoft/mpnet-base",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"MPNetModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"bos_token_id": 0,
|
| 8 |
+
"eos_token_id": 2,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 768,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 3072,
|
| 14 |
+
"layer_norm_eps": 1e-05,
|
| 15 |
+
"max_position_embeddings": 514,
|
| 16 |
+
"model_type": "mpnet",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 1,
|
| 20 |
+
"relative_attention_num_buckets": 32,
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.41.2",
|
| 23 |
+
"vocab_size": 30527
|
| 24 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.1.0.dev0",
|
| 4 |
+
"transformers": "4.41.2",
|
| 5 |
+
"pytorch": "2.3.0+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": "dot"
|
| 10 |
+
}
|
emissions.csv
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
timestamp,project_name,run_id,duration,emissions,emissions_rate,cpu_power,gpu_power,ram_power,cpu_energy,gpu_energy,ram_energy,energy_consumed,country_name,country_iso_code,region,cloud_provider,cloud_region,os,python_version,codecarbon_version,cpu_count,cpu_model,gpu_count,gpu_model,longitude,latitude,ram_total_size,tracking_mode,on_cloud,pue
|
| 2 |
+
2024-06-05T13:25:31,codecarbon,8f78a832-cb8b-4255-90f9-87291ab5a2c5,203.90490198135376,0.0066664767107362,3.269404828406667e-05,42.5,262.78315247135714,11.9164080619812,0.0024072106483909,0.0140688801439834,0.0006745199858985,0.0171506107782729,The Netherlands,NLD,utrecht,,,Windows-10-10.0.22631-SP0,3.11.6,2.3.4,24,13th Gen Intel(R) Core(TM) i7-13700K,1,1 x NVIDIA GeForce RTX 3090,5.0582,52.0756,31.777088165283203,machine,N,1.0
|
| 3 |
+
2024-06-05T14:02:28,codecarbon,c19a4b76-5dda-443e-a1eb-73550f818127,200.78387594223022,0.006543912203095872,3.259182129235663e-05,42.5,248.66806443178965,11.916408061981201,0.002370365202095774,0.013800701318329445,0.0006642268485203281,0.01683529336894555,The Netherlands,NLD,utrecht,,,Windows-10-10.0.22631-SP0,3.11.6,2.3.4,24,13th Gen Intel(R) Core(TM) i7-13700K,1,1 x NVIDIA GeForce RTX 3090,5.0582,52.0756,31.777088165283203,machine,N,1.0
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:2a6c0ac72ffdd503c8ece4111263bf928521874978a5648a81f0ac725c47eb17
|
| 3 |
+
size 437967672
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
runs/Jun05_13-21-55_Tom/events.out.tfevents.1717586522.Tom.11064.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:17b3f0ff9d4380d90fba6e4be100eceedadc23e5976d47f6be9b297671ab1427
|
| 3 |
+
size 24190
|
runs/Jun05_13-58-55_Tom/events.out.tfevents.1717588742.Tom.10892.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:48a821f3e70c350339d6208d22f32d9df5640ff90dae6a51ab863190590d472a
|
| 3 |
+
size 24190
|
runs/Jun05_14-24-25_Tom/events.out.tfevents.1717590271.Tom.22032.0
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:70b8273416c93834129344714b7a0124744f27ef49d8a44501b38e7d1e77cfac
|
| 3 |
+
size 6419
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 384,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"bos_token": {
|
| 3 |
+
"content": "<s>",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"cls_token": {
|
| 10 |
+
"content": "<s>",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": true,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"eos_token": {
|
| 17 |
+
"content": "</s>",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"mask_token": {
|
| 24 |
+
"content": "<mask>",
|
| 25 |
+
"lstrip": true,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"pad_token": {
|
| 31 |
+
"content": "<pad>",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
},
|
| 37 |
+
"sep_token": {
|
| 38 |
+
"content": "</s>",
|
| 39 |
+
"lstrip": false,
|
| 40 |
+
"normalized": true,
|
| 41 |
+
"rstrip": false,
|
| 42 |
+
"single_word": false
|
| 43 |
+
},
|
| 44 |
+
"unk_token": {
|
| 45 |
+
"content": "[UNK]",
|
| 46 |
+
"lstrip": false,
|
| 47 |
+
"normalized": false,
|
| 48 |
+
"rstrip": false,
|
| 49 |
+
"single_word": false
|
| 50 |
+
}
|
| 51 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,65 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "<s>",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"1": {
|
| 12 |
+
"content": "<pad>",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"2": {
|
| 20 |
+
"content": "</s>",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"3": {
|
| 28 |
+
"content": "<unk>",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": true,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"104": {
|
| 36 |
+
"content": "[UNK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
},
|
| 43 |
+
"30526": {
|
| 44 |
+
"content": "<mask>",
|
| 45 |
+
"lstrip": true,
|
| 46 |
+
"normalized": false,
|
| 47 |
+
"rstrip": false,
|
| 48 |
+
"single_word": false,
|
| 49 |
+
"special": true
|
| 50 |
+
}
|
| 51 |
+
},
|
| 52 |
+
"bos_token": "<s>",
|
| 53 |
+
"clean_up_tokenization_spaces": true,
|
| 54 |
+
"cls_token": "<s>",
|
| 55 |
+
"do_lower_case": true,
|
| 56 |
+
"eos_token": "</s>",
|
| 57 |
+
"mask_token": "<mask>",
|
| 58 |
+
"model_max_length": 384,
|
| 59 |
+
"pad_token": "<pad>",
|
| 60 |
+
"sep_token": "</s>",
|
| 61 |
+
"strip_accents": null,
|
| 62 |
+
"tokenize_chinese_chars": true,
|
| 63 |
+
"tokenizer_class": "MPNetTokenizer",
|
| 64 |
+
"unk_token": "[UNK]"
|
| 65 |
+
}
|
training_args.bin
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:aa5f70e62daa8cfaaf203eb6f4ee8d4968199e089a94ed1ed8a30a5a3693181c
|
| 3 |
+
size 5432
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|