File size: 6,955 Bytes
48f6b83 65b7da6 48f6b83 71a141b 48f6b83 71a141b 48f6b83 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
---
datasets:
- wikipedia
language:
- zh
- en
tags:
- chinese
- english
- TensorBlock
- GGUF
inference:
parameters:
max_new_tokens: 50
do_sample: true
widget:
- text: 粉圓,在珍珠奶茶中也稱波霸或珍珠,是一種
pipeline_tag: text-generation
base_model: p208p2002/llama-chinese-81M
---
<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>
[](https://tensorblock.co)
[](https://twitter.com/tensorblock_aoi)
[](https://discord.gg/Ej5NmeHFf2)
[](https://github.com/TensorBlock)
[](https://t.me/TensorBlock)
## p208p2002/llama-chinese-81M - GGUF
This repo contains GGUF format model files for [p208p2002/llama-chinese-81M](https://huggingface.co/p208p2002/llama-chinese-81M).
The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).
## Our projects
<table border="1" cellspacing="0" cellpadding="10">
<tr>
<th colspan="2" style="font-size: 25px;">Forge</th>
</tr>
<tr>
<th colspan="2">
<img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
</th>
</tr>
<tr>
<th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
</tr>
<tr>
<th colspan="2">
<a href="https://github.com/TensorBlock/forge" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">🚀 Try it now! 🚀</a>
</th>
</tr>
<tr>
<th style="font-size: 25px;">Awesome MCP Servers</th>
<th style="font-size: 25px;">TensorBlock Studio</th>
</tr>
<tr>
<th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
<th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
</tr>
<tr>
<th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
<th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
</tr>
<tr>
<th>
<a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
<th>
<a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
display: inline-block;
padding: 8px 16px;
background-color: #FF7F50;
color: white;
text-decoration: none;
border-radius: 6px;
font-weight: bold;
font-family: sans-serif;
">👀 See what we built 👀</a>
</th>
</tr>
</table>
## Prompt template
```
Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.
```
## Model file specification
| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [llama-chinese-81M-Q2_K.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q2_K.gguf) | Q2_K | 0.037 GB | smallest, significant quality loss - not recommended for most purposes |
| [llama-chinese-81M-Q3_K_S.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q3_K_S.gguf) | Q3_K_S | 0.042 GB | very small, high quality loss |
| [llama-chinese-81M-Q3_K_M.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q3_K_M.gguf) | Q3_K_M | 0.045 GB | very small, high quality loss |
| [llama-chinese-81M-Q3_K_L.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q3_K_L.gguf) | Q3_K_L | 0.047 GB | small, substantial quality loss |
| [llama-chinese-81M-Q4_0.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q4_0.gguf) | Q4_0 | 0.051 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [llama-chinese-81M-Q4_K_S.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q4_K_S.gguf) | Q4_K_S | 0.051 GB | small, greater quality loss |
| [llama-chinese-81M-Q4_K_M.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q4_K_M.gguf) | Q4_K_M | 0.052 GB | medium, balanced quality - recommended |
| [llama-chinese-81M-Q5_0.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q5_0.gguf) | Q5_0 | 0.059 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [llama-chinese-81M-Q5_K_S.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q5_K_S.gguf) | Q5_K_S | 0.059 GB | large, low quality loss - recommended |
| [llama-chinese-81M-Q5_K_M.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q5_K_M.gguf) | Q5_K_M | 0.060 GB | large, very low quality loss - recommended |
| [llama-chinese-81M-Q6_K.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q6_K.gguf) | Q6_K | 0.067 GB | very large, extremely low quality loss |
| [llama-chinese-81M-Q8_0.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q8_0.gguf) | Q8_0 | 0.087 GB | very large, extremely low quality loss - not recommended |
## Downloading instruction
### Command line
Firstly, install Huggingface Client
```shell
pip install -U "huggingface_hub[cli]"
```
Then, downoad the individual model file the a local directory
```shell
huggingface-cli download tensorblock/p208p2002_llama-chinese-81M-GGUF --include "llama-chinese-81M-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```
If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:
```shell
huggingface-cli download tensorblock/p208p2002_llama-chinese-81M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```
|