File size: 6,955 Bytes
48f6b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
65b7da6
 
 
 
 
 
 
48f6b83
 
 
 
 
 
 
 
 
 
71a141b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48f6b83
 
 
 
 
71a141b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
48f6b83
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
---
datasets:
- wikipedia
language:
- zh
- en
tags:
- chinese
- english
- TensorBlock
- GGUF
inference:
  parameters:
    max_new_tokens: 50
    do_sample: true
widget:
- text: 粉圓,在珍珠奶茶中也稱波霸或珍珠,是一種
pipeline_tag: text-generation
base_model: p208p2002/llama-chinese-81M
---

<div style="width: auto; margin-left: auto; margin-right: auto">
<img src="https://i.imgur.com/jC7kdl8.jpeg" alt="TensorBlock" style="width: 100%; min-width: 400px; display: block; margin: auto;">
</div>

[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co)
[![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi)
[![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2)
[![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock)
[![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock)


## p208p2002/llama-chinese-81M - GGUF

This repo contains GGUF format model files for [p208p2002/llama-chinese-81M](https://huggingface.co/p208p2002/llama-chinese-81M).

The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b5165](https://github.com/ggml-org/llama.cpp/commit/1d735c0b4fa0551c51c2f4ac888dd9a01f447985).

## Our projects
<table border="1" cellspacing="0" cellpadding="10">
  <tr>
    <th colspan="2" style="font-size: 25px;">Forge</th>
  </tr>
  <tr>
    <th colspan="2">
      <img src="https://imgur.com/faI5UKh.jpeg" alt="Forge Project" width="900"/>
    </th>
  </tr>
  <tr>
    <th colspan="2">An OpenAI-compatible multi-provider routing layer.</th>
  </tr>
  <tr>
    <th colspan="2">
      <a href="https://github.com/TensorBlock/forge" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">🚀 Try it now! 🚀</a>
    </th>
  </tr>

  <tr>
    <th style="font-size: 25px;">Awesome MCP Servers</th>
    <th style="font-size: 25px;">TensorBlock Studio</th>
  </tr>
  <tr>
    <th><img src="https://imgur.com/2Xov7B7.jpeg" alt="MCP Servers" width="450"/></th>
    <th><img src="https://imgur.com/pJcmF5u.jpeg" alt="Studio" width="450"/></th>
  </tr>
  <tr>
    <th>A comprehensive collection of Model Context Protocol (MCP) servers.</th>
    <th>A lightweight, open, and extensible multi-LLM interaction studio.</th>
  </tr>
  <tr>
    <th>
      <a href="https://github.com/TensorBlock/awesome-mcp-servers" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">👀 See what we built 👀</a>
    </th>
    <th>
      <a href="https://github.com/TensorBlock/TensorBlock-Studio" target="_blank" style="
        display: inline-block;
        padding: 8px 16px;
        background-color: #FF7F50;
        color: white;
        text-decoration: none;
        border-radius: 6px;
        font-weight: bold;
        font-family: sans-serif;
      ">👀 See what we built 👀</a>
    </th>
  </tr>
</table>

## Prompt template

```
Unable to determine prompt format automatically. Please check the original model repository for the correct prompt format.
```

## Model file specification

| Filename | Quant type | File Size | Description |
| -------- | ---------- | --------- | ----------- |
| [llama-chinese-81M-Q2_K.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q2_K.gguf) | Q2_K | 0.037 GB | smallest, significant quality loss - not recommended for most purposes |
| [llama-chinese-81M-Q3_K_S.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q3_K_S.gguf) | Q3_K_S | 0.042 GB | very small, high quality loss |
| [llama-chinese-81M-Q3_K_M.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q3_K_M.gguf) | Q3_K_M | 0.045 GB | very small, high quality loss |
| [llama-chinese-81M-Q3_K_L.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q3_K_L.gguf) | Q3_K_L | 0.047 GB | small, substantial quality loss |
| [llama-chinese-81M-Q4_0.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q4_0.gguf) | Q4_0 | 0.051 GB | legacy; small, very high quality loss - prefer using Q3_K_M |
| [llama-chinese-81M-Q4_K_S.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q4_K_S.gguf) | Q4_K_S | 0.051 GB | small, greater quality loss |
| [llama-chinese-81M-Q4_K_M.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q4_K_M.gguf) | Q4_K_M | 0.052 GB | medium, balanced quality - recommended |
| [llama-chinese-81M-Q5_0.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q5_0.gguf) | Q5_0 | 0.059 GB | legacy; medium, balanced quality - prefer using Q4_K_M |
| [llama-chinese-81M-Q5_K_S.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q5_K_S.gguf) | Q5_K_S | 0.059 GB | large, low quality loss - recommended |
| [llama-chinese-81M-Q5_K_M.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q5_K_M.gguf) | Q5_K_M | 0.060 GB | large, very low quality loss - recommended |
| [llama-chinese-81M-Q6_K.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q6_K.gguf) | Q6_K | 0.067 GB | very large, extremely low quality loss |
| [llama-chinese-81M-Q8_0.gguf](https://huggingface.co/tensorblock/p208p2002_llama-chinese-81M-GGUF/blob/main/llama-chinese-81M-Q8_0.gguf) | Q8_0 | 0.087 GB | very large, extremely low quality loss - not recommended |


## Downloading instruction

### Command line

Firstly, install Huggingface Client

```shell
pip install -U "huggingface_hub[cli]"
```

Then, downoad the individual model file the a local directory

```shell
huggingface-cli download tensorblock/p208p2002_llama-chinese-81M-GGUF --include "llama-chinese-81M-Q2_K.gguf" --local-dir MY_LOCAL_DIR
```

If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try:

```shell
huggingface-cli download tensorblock/p208p2002_llama-chinese-81M-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf'
```