--- pipeline_tag: text-generation inference: false license: apache-2.0 library_name: transformers tags: - TensorBlock - GGUF base_model: ibm/PowerMoE-3b model-index: - name: ibm/PowerMoE-3b results: - task: type: text-generation dataset: name: ARC type: lm-eval-harness metrics: - type: accuracy-norm value: 58.1 name: accuracy-norm verified: false - type: accuracy value: 65.0 name: accuracy verified: false - type: accuracy-norm value: 71.5 name: accuracy-norm verified: false - type: accuracy-norm value: 41.0 name: accuracy-norm verified: false - type: accuracy-norm value: 79.1 name: accuracy-norm verified: false - type: accuracy-norm value: 65.0 name: accuracy-norm verified: false - type: accuracy value: 42.8 name: accuracy verified: false - type: accuracy value: 25.9 name: accuracy verified: false - type: accuracy value: 14.8 name: accuracy verified: false - task: type: text-generation dataset: name: humaneval type: bigcode-eval metrics: - type: pass@1 value: 20.1 name: pass@1 verified: false - type: pass@1 value: 32.4 name: pass@1 verified: false ---
TensorBlock
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## ibm/PowerMoE-3b - GGUF This repo contains GGUF format model files for [ibm/PowerMoE-3b](https://huggingface.co/ibm/PowerMoE-3b). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit b4011](https://github.com/ggerganov/llama.cpp/commit/a6744e43e80f4be6398fc7733a01642c846dce1d). ## Our projects
Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
🚀 Try it now! 🚀
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [PowerMoE-3b-Q2_K.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q2_K.gguf) | Q2_K | 1.179 GB | smallest, significant quality loss - not recommended for most purposes | | [PowerMoE-3b-Q3_K_S.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q3_K_S.gguf) | Q3_K_S | 1.386 GB | very small, high quality loss | | [PowerMoE-3b-Q3_K_M.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q3_K_M.gguf) | Q3_K_M | 1.531 GB | very small, high quality loss | | [PowerMoE-3b-Q3_K_L.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q3_K_L.gguf) | Q3_K_L | 1.652 GB | small, substantial quality loss | | [PowerMoE-3b-Q4_0.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q4_0.gguf) | Q4_0 | 1.794 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [PowerMoE-3b-Q4_K_S.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q4_K_S.gguf) | Q4_K_S | 1.809 GB | small, greater quality loss | | [PowerMoE-3b-Q4_K_M.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q4_K_M.gguf) | Q4_K_M | 1.918 GB | medium, balanced quality - recommended | | [PowerMoE-3b-Q5_0.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q5_0.gguf) | Q5_0 | 2.178 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [PowerMoE-3b-Q5_K_S.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q5_K_S.gguf) | Q5_K_S | 2.178 GB | large, low quality loss - recommended | | [PowerMoE-3b-Q5_K_M.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q5_K_M.gguf) | Q5_K_M | 2.242 GB | large, very low quality loss - recommended | | [PowerMoE-3b-Q6_K.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q6_K.gguf) | Q6_K | 2.586 GB | very large, extremely low quality loss | | [PowerMoE-3b-Q8_0.gguf](https://huggingface.co/tensorblock/PowerMoE-3b-GGUF/blob/main/PowerMoE-3b-Q8_0.gguf) | Q8_0 | 3.346 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/PowerMoE-3b-GGUF --include "PowerMoE-3b-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/PowerMoE-3b-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```