--- license: mit license_link: https://huggingface.co/microsoft/Phi-3-medium-4k-instruct/resolve/main/LICENSE language: - multilingual pipeline_tag: text-generation tags: - nlp - code - TensorBlock - GGUF inference: parameters: temperature: 0.7 widget: - messages: - role: user content: Can you provide ways to eat combinations of bananas and dragonfruits? base_model: microsoft/Phi-3-medium-4k-instruct ---
TensorBlock
[![Website](https://img.shields.io/badge/Website-tensorblock.co-blue?logo=google-chrome&logoColor=white)](https://tensorblock.co) [![Twitter](https://img.shields.io/twitter/follow/tensorblock_aoi?style=social)](https://twitter.com/tensorblock_aoi) [![Discord](https://img.shields.io/badge/Discord-Join%20Us-5865F2?logo=discord&logoColor=white)](https://discord.gg/Ej5NmeHFf2) [![GitHub](https://img.shields.io/badge/GitHub-TensorBlock-black?logo=github&logoColor=white)](https://github.com/TensorBlock) [![Telegram](https://img.shields.io/badge/Telegram-Group-blue?logo=telegram)](https://t.me/TensorBlock) ## microsoft/Phi-3-medium-4k-instruct - GGUF This repo contains GGUF format model files for [microsoft/Phi-3-medium-4k-instruct](https://huggingface.co/microsoft/Phi-3-medium-4k-instruct). The files were quantized using machines provided by [TensorBlock](https://tensorblock.co/), and they are compatible with llama.cpp as of [commit ec7f3ac](https://github.com/ggerganov/llama.cpp/commit/ec7f3ac9ab33e46b136eb5ab6a76c4d81f57c7f1). ## Our projects
Forge
Forge Project
An OpenAI-compatible multi-provider routing layer.
🚀 Try it now! 🚀
Awesome MCP Servers TensorBlock Studio
MCP Servers Studio
A comprehensive collection of Model Context Protocol (MCP) servers. A lightweight, open, and extensible multi-LLM interaction studio.
👀 See what we built 👀 👀 See what we built 👀
## Prompt template ``` <|user|> {prompt}<|end|> <|assistant|> ``` ## Model file specification | Filename | Quant type | File Size | Description | | -------- | ---------- | --------- | ----------- | | [Phi-3-medium-4k-instruct-Q2_K.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q2_K.gguf) | Q2_K | 5.143 GB | smallest, significant quality loss - not recommended for most purposes | | [Phi-3-medium-4k-instruct-Q3_K_S.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q3_K_S.gguf) | Q3_K_S | 6.065 GB | very small, high quality loss | | [Phi-3-medium-4k-instruct-Q3_K_M.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q3_K_M.gguf) | Q3_K_M | 6.923 GB | very small, high quality loss | | [Phi-3-medium-4k-instruct-Q3_K_L.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q3_K_L.gguf) | Q3_K_L | 7.490 GB | small, substantial quality loss | | [Phi-3-medium-4k-instruct-Q4_0.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q4_0.gguf) | Q4_0 | 7.897 GB | legacy; small, very high quality loss - prefer using Q3_K_M | | [Phi-3-medium-4k-instruct-Q4_K_S.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q4_K_S.gguf) | Q4_K_S | 7.954 GB | small, greater quality loss | | [Phi-3-medium-4k-instruct-Q4_K_M.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q4_K_M.gguf) | Q4_K_M | 8.567 GB | medium, balanced quality - recommended | | [Phi-3-medium-4k-instruct-Q5_0.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q5_0.gguf) | Q5_0 | 9.622 GB | legacy; medium, balanced quality - prefer using Q4_K_M | | [Phi-3-medium-4k-instruct-Q5_K_S.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q5_K_S.gguf) | Q5_K_S | 9.622 GB | large, low quality loss - recommended | | [Phi-3-medium-4k-instruct-Q5_K_M.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q5_K_M.gguf) | Q5_K_M | 10.074 GB | large, very low quality loss - recommended | | [Phi-3-medium-4k-instruct-Q6_K.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q6_K.gguf) | Q6_K | 11.454 GB | very large, extremely low quality loss | | [Phi-3-medium-4k-instruct-Q8_0.gguf](https://huggingface.co/tensorblock/Phi-3-medium-4k-instruct-GGUF/blob/main/Phi-3-medium-4k-instruct-Q8_0.gguf) | Q8_0 | 14.835 GB | very large, extremely low quality loss - not recommended | ## Downloading instruction ### Command line Firstly, install Huggingface Client ```shell pip install -U "huggingface_hub[cli]" ``` Then, downoad the individual model file the a local directory ```shell huggingface-cli download tensorblock/Phi-3-medium-4k-instruct-GGUF --include "Phi-3-medium-4k-instruct-Q2_K.gguf" --local-dir MY_LOCAL_DIR ``` If you wanna download multiple model files with a pattern (e.g., `*Q4_K*gguf`), you can try: ```shell huggingface-cli download tensorblock/Phi-3-medium-4k-instruct-GGUF --local-dir MY_LOCAL_DIR --local-dir-use-symlinks False --include='*Q4_K*gguf' ```