--- datasets: - KaLM-Embedding/KaLM-embedding-finetuning-data base_model: - google/gemma-3-12b-pt pipeline_tag: feature-extraction library_name: sentence-transformers tags: - Retrieval - STS - Classification - Clustering - Reranking - vllm license: other license_name: tencent-kalm-embedding-community extra_gated_eu_disallowed: true ---

KaLM-Embedding-Gemma3-12B-2511

HuggingFace Homepage GitHub Paper

## Short Description **KaLM-Embedding-Gemma3-12B-2511** is a versatile and compact embedding model, which achieves SOTA performance in MMTEB (due to 11-2025). ## MMTEB Evaluation Results | Rank (Borda) | Model | Mean (Task) | Mean (TaskType) | Bitext Mining | Classification | Clustering | Instruction Reranking | Multilabel Classification | Pair Classification | Reranking | Retrieval | STS | | :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | | **1** | **KaLM-Embedding-Gemma3-12B-2511** | **72.32** | **62.51** | **83.76** | **77.88** | 55.77 | 5.49 | **33.03** | 84.73 | 67.27 | **75.66** | 79.02 | | 2 | llama-embed-nemotron-8b | 69.46 | 61.09 | 81.72 | 73.21 | 54.35 | 10.82 | 29.86 | 83.97 | **67.78** | 68.69 | 79.41 | | 3 | Qwen3-Embedding-8B | 70.58 | 61.69 | 80.89 | 74.00 | **57.65** | 10.06 | 28.66 | **86.40** | 65.63 | 70.88 | **81.08** | | 4 | gemini-embedding-001 | 68.37 | 59.59 | 79.28 | 71.82 | 54.59 | 5.18 | 29.16 | 83.63 | 65.58 | 67.71 | 79.40 | | 5 | Qwen3-Embedding-4B | 69.45 | 60.86 | 79.36 | 72.33 | 57.15 | **11.56** | 26.77 | 85.05 | 65.08 | 69.60 | 80.86 | | 6 | Qwen3-Embedding-0.6B | 64.34 | 56.01 | 72.23 | 66.83 | 52.33 | 5.09 | 24.59 | 80.83 | 61.41 | 64.65 | 76.17 | | 7 | gte-Qwen2-7B-instruct | 62.51 | 55.93 | 73.92 | 61.55 | 52.77 | 4.94 | 25.48 | 85.13 | 65.55 | 60.08 | 73.98 | | 8 | Linq-Embed-Mistral | 61.47 | 54.14 | 70.34 | 62.24 | 50.60 | 0.94 | 24.77 | 80.43 | 64.37 | 58.69 | 74.86 | | 9 | multilingual-e5-large-instruct | 63.22 | 55.08 | 80.13 | 64.94 | 50.75 | -0.40 | 22.91 | 80.86 | 62.61 | 57.12 | 76.81 | | 10 | embeddinggemma-300m | 61.15 | 54.31 | 64.40 | 60.90 | 51.17 | 5.61 | 24.82 | 81.40 | 63.25 | 62.49 | 74.73 | ## Model Details - Model Size: 11.76B - Embedding Dimension: 3840 - Max Input Tokens: 32k - MRL dimensions: 3840, 2048, 1024, 512, 256, 128, and 64 - Pooling: lasttoken pooling ## Training Recipe - High-quality supervised finetuning ## 📑 Open-source Plan - [x] Model Checkpoint - [x] [KaLM-embedding-multilingual-mini-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-v1) - [x] [KaLM-embedding-multilingual-mini-instruct-v1](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1) - [x] [KaLM-embedding-multilingual-mini-instruct-v1.5](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v1.5) - [x] [KaLM-embedding-multilingual-mini-instruct-v2](https://huggingface.co/HIT-TMG/KaLM-embedding-multilingual-mini-instruct-v2) - [x] [KaLM-embedding-multilingual-mini-instruct-v2.5](https://huggingface.co/KaLM-Embedding/KaLM-embedding-multilingual-mini-instruct-v2.5) - [x] [KaLM-Embedding-Gemma3-12B-2511](https://huggingface.co/tencent/KaLM-Embedding-Gemma3-12B-2511) - [x] Training and Evaluation Code: [HITsz-TMG/KaLM-Embedding](https://github.com/HITsz-TMG/KaLM-Embedding) - [x] Technical Report: [KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model](https://arxiv.org/abs/2506.20923v4) - [x] Pre-training Data: [Pre-training Data](https://huggingface.co/datasets/HIT-TMG/KaLM-embedding-pretrain-data) - [x] Fine-tuning Data: [Fine-tuning Data](https://huggingface.co/datasets/KaLM-Embedding/KaLM-embedding-finetuning-data) ## Usage ### sentence-transformers support Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed: ``` pip install -U sentence-transformers ``` You can use the model like this: ```python from sentence_transformers import SentenceTransformer import torch model = SentenceTransformer( "tencent/KaLM-Embedding-Gemma3-12B-2511", trust_remote_code=True, model_kwargs={ "torch_dtype": torch.bfloat16, "attn_implementation": "flash_attention_2", # Optional }, ) model.max_seq_length = 512 sentences = ["This is an example sentence", "Each sentence is converted"] prompt = "Instruct: Classifying the category of french news.\nQuery:" embeddings = model.encode( sentences, prompt=prompt, normalize_embeddings=True, batch_size=256, show_progress_bar=True, ) print(embeddings) ''' [[-0.01867676 0.02319336 0.00280762 ... -0.02075195 0.00196838 -0.0703125 ] [-0.0067749 0.03491211 0.01434326 ... -0.0043335 0.00509644 -0.04174805]] ''' ``` Or you can use `encode_query` and `encode_document` to automatically add the default prompt for queries (`"Instruct: Given a query, retrieve documents that answer the query \n Query: "`) and documents (`""`), respectively. ```python from sentence_transformers import SentenceTransformer import torch model = SentenceTransformer( "tencent/KaLM-Embedding-Gemma3-12B-2511", trust_remote_code=True, model_kwargs={ "torch_dtype": torch.bfloat16, "attn_implementation": "flash_attention_2", # Optional }, ) model.max_seq_length = 512 queries = [ "What is the capital of China?", "Explain gravity", ] documents = [ "The capital of China is Beijing.", "Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.", ] query_embeddings = model.encode_query(queries) document_embeddings = model.encode_document(documents) similarities = model.similarity(query_embeddings, document_embeddings) print(similarities) ''' tensor([[0.9034, 0.2563], [0.3153, 0.7396]]) ''' ``` ## Citation If you find this model useful, please consider giving a star and citation. ``` @misc{zhao2025kalmembeddingv2, title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model}, author={Xinping Zhao and Xinshuo Hu and Zifei Shan and Shouzheng Huang and Yao Zhou and Xin Zhang and Zetian Sun and Zhenyu Liu and Dongfang Li and Xinyuan Wei and Youcheng Pan and Yang Xiang and Meishan Zhang and Haofen Wang and Jun Yu and Baotian Hu and Min Zhang}, year={2025}, eprint={2506.20923}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2506.20923}, } @misc{hu2025kalmembedding, title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model}, author={Xinshuo Hu and Zifei Shan and Xinping Zhao and Zetian Sun and Zhenyu Liu and Dongfang Li and Shaolin Ye and Xinyuan Wei and Qian Chen and Baotian Hu and Haofen Wang and Jun Yu and Min Zhang}, year={2025}, eprint={2501.01028}, archivePrefix={arXiv}, primaryClass={cs.CL}, url={https://arxiv.org/abs/2501.01028}, } ``` ## Contact If you encounter any issue, feel free to contact us via the email: ,