File size: 6,984 Bytes
edf22f4 4591988 edf22f4 cb4ff2f edf22f4 5a3fe82 edf22f4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 |
---
datasets:
- KaLM-Embedding/KaLM-embedding-finetuning-data
base_model:
- google/gemma-3-12b-pt
pipeline_tag: sentence-similarity
library_name: sentence-transformers
tags:
- Retrieval
- STS
- Classification
- Clustering
- Reranking
- vllm
license: other
license_name: tencent-kalm-embedding-community
extra_gated_eu_disallowed: true
---
<h1 align="center">KaLM-Embedding-Gemma3-12B-2511</h1>
<p align="center">
<a href="https://huggingface.co/tencent/KaLM-Embedding-Gemma3-12B-2511">
<img src="https://img.shields.io/badge/%F0%9F%A4%97_HuggingFace-Model-ffbd45.svg" alt="HuggingFace">
</a>
<a href="https://kalm-embedding.github.io/">
<img src="https://img.shields.io/badge/Home-Page-purple.svg?logo=github&" alt="Homepage">
</a>
<a href="https://arxiv.org/abs/2506.20923">
<img src="https://img.shields.io/badge/Paper-KaLM--Embedding-d4333f?logo=arxiv&logoColor=white&colorA=cccccc&colorB=d4333f&style=flat" alt="Paper">
</a>
</p>
## Short Description
**KaLM-Embedding-Gemma3-12B-2511** is a versatile and compact embedding model, which achieves SOTA performance in MMTEB (due to 11-2025).
## MMTEB Evaluation Results
| Rank (Borda) | Model | Mean (Task) | Mean (TaskType) | Bitext Mining | Classification | Clustering | Instruction Reranking | Multilabel Classification | Pair Classification | Reranking | Retrieval | STS |
| :--- | :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| **1** | **KaLM-Embedding-Gemma3-12B-2511** | **72.32** | **62.51** | **83.76** | **77.88** | 55.77 | 5.49 | **33.03** | 84.73 | 67.27 | **75.66** | 79.02 |
| 2 | llama-embed-nemotron-8b | 69.46 | 61.09 | 81.72 | 73.21 | 54.35 | 10.82 | 29.86 | 83.97 | **67.78** | 68.69 | 79.41 |
| 3 | Qwen3-Embedding-8B | 70.58 | 61.69 | 80.89 | 74.00 | **57.65** | 10.06 | 28.66 | **86.40** | 65.63 | 70.88 | **81.08** |
| 4 | gemini-embedding-001 | 68.37 | 59.59 | 79.28 | 71.82 | 54.59 | 5.18 | 29.16 | 83.63 | 65.58 | 67.71 | 79.40 |
| 5 | Qwen3-Embedding-4B | 69.45 | 60.86 | 79.36 | 72.33 | 57.15 | **11.56** | 26.77 | 85.05 | 65.08 | 69.60 | 80.86 |
| 6 | Qwen3-Embedding-0.6B | 64.34 | 56.01 | 72.23 | 66.83 | 52.33 | 5.09 | 24.59 | 80.83 | 61.41 | 64.65 | 76.17 |
| 7 | gte-Qwen2-7B-instruct | 62.51 | 55.93 | 73.92 | 61.55 | 52.77 | 4.94 | 25.48 | 85.13 | 65.55 | 60.08 | 73.98 |
| 8 | Linq-Embed-Mistral | 61.47 | 54.14 | 70.34 | 62.24 | 50.60 | 0.94 | 24.77 | 80.43 | 64.37 | 58.69 | 74.86 |
| 9 | multilingual-e5-large-instruct | 63.22 | 55.08 | 80.13 | 64.94 | 50.75 | -0.40 | 22.91 | 80.86 | 62.61 | 57.12 | 76.81 |
| 10 | embeddinggemma-300m | 61.15 | 54.31 | 64.40 | 60.90 | 51.17 | 5.61 | 24.82 | 81.40 | 63.25 | 62.49 | 74.73 |
## Model Details
- Model Size: 11.76B
- Embedding Dimension: 3840
- Max Input Tokens: 32k
- MRL dimensions: 3840, 2048, 1024, 512, 256, 128, and 64
- Pooling: lasttoken pooling
## Usage
### sentence-transformers support
Using this model becomes easy when you have [sentence-transformers](https://www.SBERT.net) installed:
```
pip install -U sentence-transformers
```
You can use the model like this:
```python
from sentence_transformers import SentenceTransformer
import torch
model = SentenceTransformer(
"tencent/KaLM-Embedding-Gemma3-12B-2511",
trust_remote_code=True,
model_kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2", # Optional
},
)
model.max_seq_length = 512
sentences = ["This is an example sentence", "Each sentence is converted"]
prompt = "Instruct: Classifying the category of french news.\nQuery:"
embeddings = model.encode(
sentences,
prompt=prompt,
normalize_embeddings=True,
batch_size=256,
show_progress_bar=True,
)
print(embeddings)
```
Or you can use `encode_query` and `encode_document` to automatically add the default prompt for queries (`"Instruct: Given a query, retrieve documents that answer the query \nQuery: "`) and documents (`""`), respectively.
```python
from sentence_transformers import SentenceTransformer
import torch
model = SentenceTransformer(
"tencent/KaLM-Embedding-Gemma3-12B-2511",
trust_remote_code=True,
model_kwargs={
"torch_dtype": torch.bfloat16,
"attn_implementation": "flash_attention_2", # Optional
},
)
model.max_seq_length = 512
queries = [
"What is the capital of China?",
"Explain gravity",
]
documents = [
"The capital of China is Beijing.",
"Gravity is a force that attracts two bodies towards each other. It gives weight to physical objects and is responsible for the movement of planets around the sun.",
]
query_embeddings = model.encode_query(queries)
document_embeddings = model.encode_document(documents)
similarities = model.similarity(query_embeddings, document_embeddings)
print(similarities)
```
### vllm support
Note: Since [vllm](https://github.com/vllm-project/vllm/tree/main) only supports the [Gemma3ForCausalLM](https://huggingface.co/docs/transformers/en/model_doc/gemma3#transformers.Gemma3ForCausalLM) model class and not [Gemma3TextModel](https://huggingface.co/docs/transformers/en/model_doc/gemma3#transformers.Gemma3TextModel), model parameters must be loaded by specifying the CausalLM branch via `revision="CausalLM"`.
```python
from vllm import LLM
sentences = ["This is an example sentence", "Each sentence is converted"]
# Create an LLM.
# You should pass task="embed" for embedding models
model = LLM(
model="tencent/KaLM-Embedding-Gemma3-12B-2511",
task="embed",
enforce_eager=True,
revision="CausalLM", # specify the CausalLM branch for Gemma3ForCausalLM config
)
outputs = model.embed(sentences)
embeddings = [output.outputs.embedding for output in outputs]
```
## Citation
If you find this model useful, please consider giving a star and citation.
```
@misc{zhao2025kalmembeddingv2,
title={KaLM-Embedding-V2: Superior Training Techniques and Data Inspire A Versatile Embedding Model},
author={Xinping Zhao and Xinshuo Hu and Zifei Shan and Shouzheng Huang and Yao Zhou and Xin Zhang and Zetian Sun and Zhenyu Liu and Dongfang Li and Xinyuan Wei and Youcheng Pan and Yang Xiang and Meishan Zhang and Haofen Wang and Jun Yu and Baotian Hu and Min Zhang},
year={2025},
eprint={2506.20923},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2506.20923},
}
@misc{hu2025kalmembedding,
title={KaLM-Embedding: Superior Training Data Brings A Stronger Embedding Model},
author={Xinshuo Hu and Zifei Shan and Xinping Zhao and Zetian Sun and Zhenyu Liu and Dongfang Li and Shaolin Ye and Xinyuan Wei and Qian Chen and Baotian Hu and Haofen Wang and Jun Yu and Min Zhang},
year={2025},
eprint={2501.01028},
archivePrefix={arXiv},
primaryClass={cs.CL},
url={https://arxiv.org/abs/2501.01028},
}
```
## Contact
If you encounter any issue, feel free to contact us via the email: <[email protected]>, <[email protected]> |