Upload Creativity ITI components for LLaMA 3.1 8B
Browse files- README.md +171 -0
- iti_components.pkl +3 -0
- iti_config.json +0 -0
- requirements.txt +4 -0
README.md
ADDED
|
@@ -0,0 +1,171 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: apache-2.0
|
| 3 |
+
tags:
|
| 4 |
+
- inference-time-intervention
|
| 5 |
+
- code-generation
|
| 6 |
+
- creativity
|
| 7 |
+
- llama
|
| 8 |
+
- pytorch
|
| 9 |
+
datasets:
|
| 10 |
+
- neocoder
|
| 11 |
+
language:
|
| 12 |
+
- en
|
| 13 |
+
library_name: transformers
|
| 14 |
+
pipeline_tag: text-generation
|
| 15 |
+
base_model: meta-llama/Meta-Llama-3.1-8B-Instruct
|
| 16 |
+
---
|
| 17 |
+
|
| 18 |
+
# Creativity ITI for LLaMA 3.1 8B Instruct
|
| 19 |
+
|
| 20 |
+
## π― Model Description
|
| 21 |
+
|
| 22 |
+
This repository contains **Inference-Time Intervention (ITI)** components for enhancing creativity in code generation with LLaMA 3.1 8B Instruct.
|
| 23 |
+
|
| 24 |
+
ITI modifies model activations during inference to steer behavior without retraining - think of it as "creativity steering" for AI code generation.
|
| 25 |
+
|
| 26 |
+
## π Key Results
|
| 27 |
+
|
| 28 |
+
- **68.8% test accuracy** in creativity detection
|
| 29 |
+
- **Optimal Ξ±=0.4** intervention strength
|
| 30 |
+
- **48 attention heads** identified for creativity
|
| 31 |
+
- Trained on **1058 coding problems** from NeoCoder
|
| 32 |
+
|
| 33 |
+
## π Quick Start
|
| 34 |
+
|
| 35 |
+
### Installation
|
| 36 |
+
|
| 37 |
+
```bash
|
| 38 |
+
pip install transformers torch numpy
|
| 39 |
+
```
|
| 40 |
+
|
| 41 |
+
### Basic Usage
|
| 42 |
+
|
| 43 |
+
```python
|
| 44 |
+
import pickle
|
| 45 |
+
import json
|
| 46 |
+
import torch
|
| 47 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 48 |
+
|
| 49 |
+
# Load ITI components
|
| 50 |
+
with open('iti_config.json', 'r') as f:
|
| 51 |
+
config = json.load(f)
|
| 52 |
+
|
| 53 |
+
with open('iti_components.pkl', 'rb') as f:
|
| 54 |
+
components = pickle.load(f)
|
| 55 |
+
|
| 56 |
+
# Initialize model
|
| 57 |
+
model_name = "meta-llama/Meta-Llama-3.1-8B-Instruct"
|
| 58 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 59 |
+
model_name,
|
| 60 |
+
torch_dtype=torch.float16,
|
| 61 |
+
device_map="auto"
|
| 62 |
+
)
|
| 63 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 64 |
+
|
| 65 |
+
# Apply ITI with Ξ±=0.4
|
| 66 |
+
alpha = config['metadata']['alpha']
|
| 67 |
+
directions = components['directions']
|
| 68 |
+
top_heads = components['top_heads']
|
| 69 |
+
```
|
| 70 |
+
|
| 71 |
+
## π Performance Metrics
|
| 72 |
+
|
| 73 |
+
| Metric | Value |
|
| 74 |
+
|--------|-------|
|
| 75 |
+
| Training Samples | 48 (balanced) |
|
| 76 |
+
| Validation Accuracy | 62.5% |
|
| 77 |
+
| Test Accuracy | 68.8% |
|
| 78 |
+
| Optimal Alpha (Ξ±) | 0.4 |
|
| 79 |
+
| Intervention Heads | 48 |
|
| 80 |
+
| Best Single Layer | Layer 3 |
|
| 81 |
+
| Top Head | Layer 17, Head 21 (AUC=0.734) |
|
| 82 |
+
|
| 83 |
+
## π¬ Technical Details
|
| 84 |
+
|
| 85 |
+
### How ITI Works
|
| 86 |
+
|
| 87 |
+
1. **Probe Training**: Linear probes identify which attention heads correlate with creative code
|
| 88 |
+
2. **Direction Finding**: Calculate "creativity directions" in activation space
|
| 89 |
+
3. **Runtime Intervention**: During inference, shift activations by Ξ±=0.4 in creative direction
|
| 90 |
+
4. **Result**: Model generates more innovative code solutions
|
| 91 |
+
|
| 92 |
+
### File Contents
|
| 93 |
+
|
| 94 |
+
- `iti_config.json`: Configuration, metadata, and intervention directions
|
| 95 |
+
- `iti_components.pkl`: Binary format with top heads and directions
|
| 96 |
+
- `README.md`: This documentation
|
| 97 |
+
|
| 98 |
+
## π‘ Example Output Comparison
|
| 99 |
+
|
| 100 |
+
**Problem**: "Check if a number is prime"
|
| 101 |
+
|
| 102 |
+
**Without ITI (Baseline):**
|
| 103 |
+
```python
|
| 104 |
+
def is_prime(n):
|
| 105 |
+
if n <= 1:
|
| 106 |
+
return False
|
| 107 |
+
for i in range(2, n):
|
| 108 |
+
if n % i == 0:
|
| 109 |
+
return False
|
| 110 |
+
return True
|
| 111 |
+
```
|
| 112 |
+
|
| 113 |
+
**With ITI (Ξ±=0.4):**
|
| 114 |
+
```python
|
| 115 |
+
def is_prime(n):
|
| 116 |
+
return n > 1 and all(n % i for i in range(2, int(n**0.5) + 1))
|
| 117 |
+
```
|
| 118 |
+
|
| 119 |
+
The ITI version is more concise and uses advanced techniques (generator expression, all()).
|
| 120 |
+
|
| 121 |
+
## π Dataset
|
| 122 |
+
|
| 123 |
+
Trained on the **NeoCoder** dataset:
|
| 124 |
+
- 1058 competitive programming problems
|
| 125 |
+
- Creativity labeled based on novel technique usage
|
| 126 |
+
- Only 4.3% of solutions were labeled as truly creative
|
| 127 |
+
- Balanced training set: 40 creative + 40 non-creative samples
|
| 128 |
+
|
| 129 |
+
## ποΈ Implementation Details
|
| 130 |
+
|
| 131 |
+
### Key Components
|
| 132 |
+
|
| 133 |
+
1. **Top Heads**: 48 attention heads most predictive of creativity
|
| 134 |
+
2. **Intervention Layers**: Distributed across layers 3-31
|
| 135 |
+
3. **Direction Vectors**: 128-dimensional vectors per head
|
| 136 |
+
4. **Activation Shift**: Applied to last token during generation
|
| 137 |
+
|
| 138 |
+
## π Citation
|
| 139 |
+
|
| 140 |
+
If you use this work, please cite:
|
| 141 |
+
|
| 142 |
+
```bibtex
|
| 143 |
+
@article{li2023inference,
|
| 144 |
+
title={Inference-Time Intervention: Eliciting Truthful Answers from a Language Model},
|
| 145 |
+
author={Li, Kenneth and others},
|
| 146 |
+
journal={NeurIPS},
|
| 147 |
+
year={2023}
|
| 148 |
+
}
|
| 149 |
+
```
|
| 150 |
+
|
| 151 |
+
## π Acknowledgments
|
| 152 |
+
|
| 153 |
+
- Original ITI paper authors (Li et al., 2023)
|
| 154 |
+
- NeoCoder dataset creators
|
| 155 |
+
- Meta AI for LLaMA 3.1
|
| 156 |
+
- NSCC Singapore for compute resources
|
| 157 |
+
|
| 158 |
+
## π License
|
| 159 |
+
|
| 160 |
+
Apache 2.0 - See LICENSE file for details
|
| 161 |
+
|
| 162 |
+
## β οΈ Limitations
|
| 163 |
+
|
| 164 |
+
- Intervention may occasionally produce syntactically invalid code
|
| 165 |
+
- Effectiveness varies by problem complexity
|
| 166 |
+
- Requires LLaMA 3.1 8B model (not included)
|
| 167 |
+
|
| 168 |
+
## π Links
|
| 169 |
+
|
| 170 |
+
- [Original ITI Paper](https://arxiv.org/abs/2306.03341)
|
| 171 |
+
- [Base Model: LLaMA 3.1 8B](https://huggingface.co/meta-llama/Meta-Llama-3.1-8B-Instruct)
|
iti_components.pkl
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:560cbf82915fc4ce490b08f24dbe06e60f0ecfe915b3bc93431771d0ada978cc
|
| 3 |
+
size 17539
|
iti_config.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
requirements.txt
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers>=4.30.0
|
| 2 |
+
torch>=2.0.0
|
| 3 |
+
numpy>=1.20.0
|
| 4 |
+
huggingface-hub>=0.16.0
|