sweatSmile commited on
Commit
68d87ba
·
verified ·
1 Parent(s): b6be150

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +82 -3
README.md CHANGED
@@ -1,3 +1,82 @@
1
- ---
2
- license: apache-2.0
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: microsoft/DialoGPT-small
3
+ pipeline_tag: text-generation
4
+ library_name: transformers
5
+ tags:
6
+ - conversational-ai
7
+ - finance
8
+ - fintech
9
+ - trading
10
+ - market-sentiment
11
+ - financial-news
12
+ - sentiment-analysis
13
+ - lora
14
+ - market-analysis
15
+ - trading-assistant
16
+ - investment-research
17
+ - hedge-funds
18
+ - algorithmic-trading
19
+ language:
20
+ - en
21
+ license: mit
22
+ datasets:
23
+ - zeroshot/twitter-financial-news-sentiment
24
+ metrics:
25
+ - perplexity
26
+ - accuracy
27
+ widget:
28
+ - text: "<|user|> What's the market sentiment for this news: Apple reports record quarterly earnings beating analyst expectations <|bot|>"
29
+ example_title: "Bullish News Analysis"
30
+ - text: "<|user|> What's the market sentiment for this news: Tech stocks face regulatory pressure from new government policies <|bot|>"
31
+ example_title: "Bearish News Analysis"
32
+ - text: "<|user|> What's the market sentiment for this news: Federal Reserve maintains current interest rates as expected <|bot|>"
33
+ example_title: "Neutral Market News"
34
+ ---
35
+
36
+ # DialoGPT-Financial-Market-Sentiment-Trading-Assistant
37
+
38
+ Fine-tuned DialoGPT-small for financial news sentiment analysis and market sentiment interpretation for trading and investment decisions.
39
+
40
+ ## Overview
41
+ - **Base Model:** microsoft/DialoGPT-small (117M parameters)
42
+ - **Fine-tuning Method:** LoRA (4-bit quantization)
43
+ - **Dataset:** Financial news sentiment dataset (1.5K samples)
44
+ - **Training:** 3 epochs with optimized hyperparameters
45
+
46
+ ## Key Features
47
+ - Real-time financial news sentiment analysis
48
+ - Market sentiment interpretation for trading decisions
49
+ - Bullish/Bearish/Neutral sentiment classification
50
+ - Conversational interface for market analysis
51
+ - Optimized for trading desks and investment research
52
+
53
+ ## Usage
54
+
55
+ ```python
56
+ from transformers import AutoTokenizer, AutoModelForCausalLM
57
+
58
+ model = AutoModelForCausalLM.from_pretrained("sweatSmile/DialoGPT-Financial-Market-Sentiment-Trading-Assistant")
59
+ tokenizer = AutoTokenizer.from_pretrained("sweatSmile/DialoGPT-Financial-Market-Sentiment-Trading-Assistant")
60
+
61
+ # Market sentiment analysis example
62
+ prompt = "<|user|> What's the market sentiment for this news: Tesla stock surges after record delivery numbers <|bot|>"
63
+ inputs = tokenizer(prompt, return_tensors="pt")
64
+ outputs = model.generate(**inputs, max_new_tokens=150, pad_token_id=tokenizer.eos_token_id)
65
+ print(tokenizer.decode(outputs[0], skip_special_tokens=True))
66
+ ```
67
+
68
+ ## Applications
69
+ - Trading desk sentiment analysis
70
+ - Algorithmic trading signal generation
71
+ - Investment research and market analysis
72
+ - Hedge fund market sentiment monitoring
73
+ - Financial news interpretation for portfolio decisions
74
+
75
+ ## Training Details
76
+ - LoRA rank: 8, alpha: 16
77
+ - 4-bit NF4 quantization with fp16 precision
78
+ - Learning rate: 3e-4 with linear scheduling
79
+ - Batch size: 8, Max length: 256 tokens
80
+ - 3 epochs on curated financial sentiment data
81
+
82
+ Specialized for high-frequency market sentiment analysis in trading environments.