File size: 3,118 Bytes
60597a0 528b65c 60597a0 528b65c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 |
---
base_model: Qwen/Qwen3-8B
library_name: peft
language:
- ko
- en
license: apache-2.0
tags:
- korean
- qwen3
- lora
- finetuned
- deepspeed
---
# Qwen3-8B Korean Finetuned Model
์ด ๋ชจ๋ธ์ Qwen3-8B๋ฅผ ํ๊ตญ์ด ๋ฐ์ดํฐ๋ก ํ์ธํ๋ํ LoRA ๋ชจ๋ธ์
๋๋ค.
## ๋ชจ๋ธ ์์ธ ์ ๋ณด
- **๊ธฐ๋ณธ ๋ชจ๋ธ**: Qwen/Qwen3-8B
- **ํ์ธํ๋ ๋ฐฉ๋ฒ**: LoRA (Low-Rank Adaptation)
- **ํ๋ จ ํ๋ ์์ํฌ**: DeepSpeed ZeRO-2 + Transformers
- **์ธ์ด**: ํ๊ตญ์ด, ์์ด
- **๊ฐ๋ฐ์**: supermon2018
## ํ๋ จ ๊ตฌ์ฑ
### LoRA ์ค์
- **Rank (r)**: 4
- **Alpha**: 8
- **Dropout**: 0.05
- **Target Modules**: qkv_proj, o_proj, gate_proj, up_proj, down_proj
### ํ๋ จ ํ๋ผ๋ฏธํฐ
- **Epochs**: 2
- **Batch Size**: 2 per device
- **Gradient Accumulation**: 8 steps
- **Learning Rate**: 2e-4
- **Precision**: BF16
- **Optimizer**: AdamW
### ํ๋์จ์ด
- **GPU**: 3x RTX 4090 (24GB each)
- **๋ถ์ฐ ํ๋ จ**: DeepSpeed ZeRO-2
- **๋ฉ๋ชจ๋ฆฌ ์ต์ ํ**: Gradient Checkpointing
## ์ฌ์ฉ ๋ฐฉ๋ฒ
### ์์กด์ฑ ์ค์น
```bash
pip install torch transformers peft
```
### ๋ชจ๋ธ ๋ก๋ ๋ฐ ์ฌ์ฉ
```python
from peft import PeftModel
from transformers import AutoModelForCausalLM, AutoTokenizer
import torch
# ๊ธฐ๋ณธ ๋ชจ๋ธ๊ณผ ํ ํฌ๋์ด์ ๋ก๋
base_model_name = "Qwen/Qwen3-8B"
model = AutoModelForCausalLM.from_pretrained(
base_model_name,
torch_dtype=torch.bfloat16,
device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained(base_model_name)
# LoRA ์ด๋ํฐ ๋ก๋
model = PeftModel.from_pretrained(
model,
"supermon2018/qwen3-8b-korean-finetuned"
)
# ์ถ๋ก
def generate_response(prompt, max_length=512):
inputs = tokenizer(prompt, return_tensors="pt")
with torch.no_grad():
outputs = model.generate(
**inputs,
max_length=max_length,
temperature=0.7,
do_sample=True,
pad_token_id=tokenizer.eos_token_id
)
response = tokenizer.decode(outputs[0], skip_special_tokens=True)
return response[len(prompt):].strip()
# ์ฌ์ฉ ์์
prompt = "์๋
ํ์ธ์. ํ๊ตญ์ด๋ก ๋ํํด ์ฃผ์ธ์."
response = generate_response(prompt)
print(response)
```
## ์ฑ๋ฅ ๋ฐ ํน์ง
- **๋ฉ๋ชจ๋ฆฌ ํจ์จ์ฑ**: LoRA๋ฅผ ์ฌ์ฉํ์ฌ 16MB ํฌ๊ธฐ์ ๊ฐ๋ฒผ์ด ์ด๋ํฐ
- **๋ค๊ตญ์ด ์ง์**: ํ๊ตญ์ด์ ์์ด ๋ชจ๋ ์ง์
- **๋น ๋ฅธ ์ถ๋ก **: ๊ธฐ๋ณธ ๋ชจ๋ธ์ ์ด๋ํฐ๋ง ์ถ๊ฐํ์ฌ ๋น ๋ฅธ ๋ก๋ฉ
## ์ ํ์ฌํญ
- ์ด ๋ชจ๋ธ์ LoRA ์ด๋ํฐ์ด๋ฏ๋ก ๊ธฐ๋ณธ Qwen3-8B ๋ชจ๋ธ๊ณผ ํจ๊ป ์ฌ์ฉํด์ผ ํฉ๋๋ค
- ํน์ ๋๋ฉ์ธ์ด๋ ํ์คํฌ์ ๋ฐ๋ผ ์ถ๊ฐ ํ์ธํ๋์ด ํ์ํ ์ ์์ต๋๋ค
## ๋ผ์ด์ ์ค
Apache 2.0 ๋ผ์ด์ ์ค๋ฅผ ๋ฐ๋ฆ
๋๋ค.
## ์ธ์ฉ
์ด ๋ชจ๋ธ์ ์ฌ์ฉํ์ค ๋๋ ๋ค์๊ณผ ๊ฐ์ด ์ธ์ฉํด ์ฃผ์ธ์:
```bibtex
@misc{qwen3-korean-finetuned,
author = {supermon2018},
title = {Qwen3-8B Korean Finetuned Model},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/supermon2018/qwen3-8b-korean-finetuned}
}
```
## ๋ฌธ์์ฌํญ
๋ชจ๋ธ ์ฌ์ฉ ์ค ๋ฌธ์์ฌํญ์ด ์์ผ์๋ฉด ์ด์๋ฅผ ๋จ๊ฒจ์ฃผ์ธ์. |