sungmineom commited on
Commit
9bf7636
·
verified ·
1 Parent(s): e32f89f

Qwen 1.5B fine-tuned for grounded text generation with citations

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
README.md ADDED
@@ -0,0 +1,256 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ base_model: Qwen/Qwen2.5-1.5B
3
+ library_name: peft
4
+ pipeline_tag: text-generation
5
+ tags:
6
+ - qwen2.5
7
+ - lora
8
+ - grounded-text-generation
9
+ - citation
10
+ - transformers
11
+ ---
12
+
13
+ # Qwen 2.5-1.5B Fine-tuned for Grounded Text Generation with Citations
14
+
15
+ This model is a fine-tuned version of [Qwen/Qwen2.5-1.5B](https://huggingface.co/Qwen/Qwen2.5-1.5B) using LoRA adapters.
16
+ It has been trained to generate accurate answers with proper source citations based on provided documents.
17
+
18
+ ## Model Details
19
+
20
+ ### Model Description
21
+
22
+ This model generates answers to questions by:
23
+ 1. Reading provided source documents
24
+ 2. Generating accurate, concise answers
25
+ 3. Citing sources using [1], [2], [3] format
26
+ 4. Only using information from the provided documents
27
+
28
+ - **Developed by:** sungmineom
29
+ - **Model type:** Causal Language Model (Fine-tuned with LoRA)
30
+ - **Language(s):** English (primary), Korean
31
+ - **License:** Same as base model (Qwen2.5-1.5B)
32
+ - **Finetuned from model:** Qwen/Qwen2.5-1.5B
33
+
34
+ ### Training Details
35
+
36
+ - **Training data:** combined_train.json (10,000 samples)
37
+ - **Validation data:** combined_test.json (1,000 samples)
38
+ - **LoRA rank:** 16
39
+ - **LoRA alpha:** 32
40
+ - **Batch size:** 2 (with gradient accumulation steps: 8)
41
+ - **Learning rate:** 2e-4
42
+ - **Epochs:** 3
43
+ - **Max sequence length:** 2048 tokens
44
+ - **Quantization:** 4-bit (nf4) for training efficiency
45
+
46
+ ## Uses
47
+
48
+ ### Direct Use
49
+
50
+ This model is designed for Question Answering tasks where you want:
51
+ - Accurate answers based on specific documents
52
+ - Proper source attribution with citations
53
+ - Grounded generation (no hallucination from outside sources)
54
+
55
+ ### Usage Example
56
+
57
+ ```python
58
+ from transformers import AutoTokenizer, AutoModelForCausalLM
59
+ from peft import PeftModel
60
+ import torch
61
+
62
+ # Load base model
63
+ base_model_name = "Qwen/Qwen2.5-1.5B"
64
+ base_model = AutoModelForCausalLM.from_pretrained(
65
+ base_model_name,
66
+ torch_dtype=torch.bfloat16,
67
+ device_map="auto"
68
+ )
69
+
70
+ # Load LoRA adapter
71
+ model = PeftModel.from_pretrained(base_model, "sungmineom/qwen-1.5b-grounded-lora")
72
+ tokenizer = AutoTokenizer.from_pretrained("sungmineom/qwen-1.5b-grounded-lora")
73
+
74
+ # Prepare input
75
+ question = "What are the benefits of exercise?"
76
+ docs = [
77
+ {"title": "Health Benefits", "text": "Exercise improves cardiovascular health..."},
78
+ {"title": "Mental Health", "text": "Exercise reduces anxiety and depression..."}
79
+ ]
80
+
81
+ doc_text = ""
82
+ for i, doc in enumerate(docs, 1):
83
+ doc_text += f"Document [{i}](Title: {doc['title']}): {doc['text']}\n"
84
+
85
+ prompt = f"""Instruction: Write an accurate, engaging, and concise answer for the given question using only the provided search results (some of which might be irrelevant) and cite them properly. Use an unbiased and journalistic tone. Always cite for any factual claim. When citing several search results, use [1][2][3]. Cite at least one document and at most three documents in each sentence. If multiple documents support the sentence, only cite a minimum sufficient subset of the documents.
86
+
87
+ Question: {question}
88
+
89
+ {doc_text}
90
+ Answer:"""
91
+
92
+ # Generate
93
+ inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
94
+ outputs = model.generate(**inputs, max_new_tokens=512, temperature=0.7, top_p=0.9)
95
+ answer = tokenizer.decode(outputs[0], skip_special_tokens=True).split("Answer:")[-1].strip()
96
+
97
+ print(answer)
98
+ ```
99
+
100
+ ### Downstream Use [optional]
101
+
102
+ <!-- This section is for the model use when fine-tuned for a task, or when plugged into a larger ecosystem/app -->
103
+
104
+ [More Information Needed]
105
+
106
+ ### Out-of-Scope Use
107
+
108
+ <!-- This section addresses misuse, malicious use, and uses that the model will not work well for. -->
109
+
110
+ [More Information Needed]
111
+
112
+ ## Bias, Risks, and Limitations
113
+
114
+ <!-- This section is meant to convey both technical and sociotechnical limitations. -->
115
+
116
+ [More Information Needed]
117
+
118
+ ### Recommendations
119
+
120
+ <!-- This section is meant to convey recommendations with respect to the bias, risk, and technical limitations. -->
121
+
122
+ Users (both direct and downstream) should be made aware of the risks, biases and limitations of the model. More information needed for further recommendations.
123
+
124
+ ## How to Get Started with the Model
125
+
126
+ Use the code below to get started with the model.
127
+
128
+ [More Information Needed]
129
+
130
+ ## Training Details
131
+
132
+ ### Training Data
133
+
134
+ <!-- This should link to a Dataset Card, perhaps with a short stub of information on what the training data is all about as well as documentation related to data pre-processing or additional filtering. -->
135
+
136
+ [More Information Needed]
137
+
138
+ ### Training Procedure
139
+
140
+ <!-- This relates heavily to the Technical Specifications. Content here should link to that section when it is relevant to the training procedure. -->
141
+
142
+ #### Preprocessing [optional]
143
+
144
+ [More Information Needed]
145
+
146
+
147
+ #### Training Hyperparameters
148
+
149
+ - **Training regime:** [More Information Needed] <!--fp32, fp16 mixed precision, bf16 mixed precision, bf16 non-mixed precision, fp16 non-mixed precision, fp8 mixed precision -->
150
+
151
+ #### Speeds, Sizes, Times [optional]
152
+
153
+ <!-- This section provides information about throughput, start/end time, checkpoint size if relevant, etc. -->
154
+
155
+ [More Information Needed]
156
+
157
+ ## Evaluation
158
+
159
+ <!-- This section describes the evaluation protocols and provides the results. -->
160
+
161
+ ### Testing Data, Factors & Metrics
162
+
163
+ #### Testing Data
164
+
165
+ <!-- This should link to a Dataset Card if possible. -->
166
+
167
+ [More Information Needed]
168
+
169
+ #### Factors
170
+
171
+ <!-- These are the things the evaluation is disaggregating by, e.g., subpopulations or domains. -->
172
+
173
+ [More Information Needed]
174
+
175
+ #### Metrics
176
+
177
+ <!-- These are the evaluation metrics being used, ideally with a description of why. -->
178
+
179
+ [More Information Needed]
180
+
181
+ ### Results
182
+
183
+ [More Information Needed]
184
+
185
+ #### Summary
186
+
187
+
188
+
189
+ ## Model Examination [optional]
190
+
191
+ <!-- Relevant interpretability work for the model goes here -->
192
+
193
+ [More Information Needed]
194
+
195
+ ## Environmental Impact
196
+
197
+ <!-- Total emissions (in grams of CO2eq) and additional considerations, such as electricity usage, go here. Edit the suggested text below accordingly -->
198
+
199
+ Carbon emissions can be estimated using the [Machine Learning Impact calculator](https://mlco2.github.io/impact#compute) presented in [Lacoste et al. (2019)](https://arxiv.org/abs/1910.09700).
200
+
201
+ - **Hardware Type:** [More Information Needed]
202
+ - **Hours used:** [More Information Needed]
203
+ - **Cloud Provider:** [More Information Needed]
204
+ - **Compute Region:** [More Information Needed]
205
+ - **Carbon Emitted:** [More Information Needed]
206
+
207
+ ## Technical Specifications [optional]
208
+
209
+ ### Model Architecture and Objective
210
+
211
+ [More Information Needed]
212
+
213
+ ### Compute Infrastructure
214
+
215
+ [More Information Needed]
216
+
217
+ #### Hardware
218
+
219
+ [More Information Needed]
220
+
221
+ #### Software
222
+
223
+ [More Information Needed]
224
+
225
+ ## Citation [optional]
226
+
227
+ <!-- If there is a paper or blog post introducing the model, the APA and Bibtex information for that should go in this section. -->
228
+
229
+ **BibTeX:**
230
+
231
+ [More Information Needed]
232
+
233
+ **APA:**
234
+
235
+ [More Information Needed]
236
+
237
+ ## Glossary [optional]
238
+
239
+ <!-- If relevant, include terms and calculations in this section that can help readers understand the model or model card. -->
240
+
241
+ [More Information Needed]
242
+
243
+ ## More Information [optional]
244
+
245
+ [More Information Needed]
246
+
247
+ ## Model Card Authors [optional]
248
+
249
+ [More Information Needed]
250
+
251
+ ## Model Card Contact
252
+
253
+ [More Information Needed]
254
+ ### Framework versions
255
+
256
+ - PEFT 0.17.1
adapter_config.json ADDED
@@ -0,0 +1,42 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "alpha_pattern": {},
3
+ "auto_mapping": null,
4
+ "base_model_name_or_path": "/home/elicer/simon/models/qwen2.5-1.5b",
5
+ "bias": "none",
6
+ "corda_config": null,
7
+ "eva_config": null,
8
+ "exclude_modules": null,
9
+ "fan_in_fan_out": false,
10
+ "inference_mode": true,
11
+ "init_lora_weights": true,
12
+ "layer_replication": null,
13
+ "layers_pattern": null,
14
+ "layers_to_transform": null,
15
+ "loftq_config": {},
16
+ "lora_alpha": 32,
17
+ "lora_bias": false,
18
+ "lora_dropout": 0.05,
19
+ "megatron_config": null,
20
+ "megatron_core": "megatron.core",
21
+ "modules_to_save": null,
22
+ "peft_type": "LORA",
23
+ "qalora_group_size": 16,
24
+ "r": 16,
25
+ "rank_pattern": {},
26
+ "revision": null,
27
+ "target_modules": [
28
+ "q_proj",
29
+ "up_proj",
30
+ "v_proj",
31
+ "down_proj",
32
+ "gate_proj",
33
+ "k_proj",
34
+ "o_proj"
35
+ ],
36
+ "target_parameters": null,
37
+ "task_type": "CAUSAL_LM",
38
+ "trainable_token_indices": null,
39
+ "use_dora": false,
40
+ "use_qalora": false,
41
+ "use_rslora": false
42
+ }
adapter_model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:975b936dd1058e927789da13c23838bb1bf3bedb52104449c96b9ef368cce09a
3
+ size 73911112
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
chat_template.jinja ADDED
@@ -0,0 +1,54 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {%- if tools %}
2
+ {{- '<|im_start|>system\n' }}
3
+ {%- if messages[0]['role'] == 'system' %}
4
+ {{- messages[0]['content'] }}
5
+ {%- else %}
6
+ {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}
7
+ {%- endif %}
8
+ {{- "\n\n# Tools\n\nYou may call one or more functions to assist with the user query.\n\nYou are provided with function signatures within <tools></tools> XML tags:\n<tools>" }}
9
+ {%- for tool in tools %}
10
+ {{- "\n" }}
11
+ {{- tool | tojson }}
12
+ {%- endfor %}
13
+ {{- "\n</tools>\n\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\n<tool_call>\n{\"name\": <function-name>, \"arguments\": <args-json-object>}\n</tool_call><|im_end|>\n" }}
14
+ {%- else %}
15
+ {%- if messages[0]['role'] == 'system' %}
16
+ {{- '<|im_start|>system\n' + messages[0]['content'] + '<|im_end|>\n' }}
17
+ {%- else %}
18
+ {{- '<|im_start|>system\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\n' }}
19
+ {%- endif %}
20
+ {%- endif %}
21
+ {%- for message in messages %}
22
+ {%- if (message.role == "user") or (message.role == "system" and not loop.first) or (message.role == "assistant" and not message.tool_calls) %}
23
+ {{- '<|im_start|>' + message.role + '\n' + message.content + '<|im_end|>' + '\n' }}
24
+ {%- elif message.role == "assistant" %}
25
+ {{- '<|im_start|>' + message.role }}
26
+ {%- if message.content %}
27
+ {{- '\n' + message.content }}
28
+ {%- endif %}
29
+ {%- for tool_call in message.tool_calls %}
30
+ {%- if tool_call.function is defined %}
31
+ {%- set tool_call = tool_call.function %}
32
+ {%- endif %}
33
+ {{- '\n<tool_call>\n{"name": "' }}
34
+ {{- tool_call.name }}
35
+ {{- '", "arguments": ' }}
36
+ {{- tool_call.arguments | tojson }}
37
+ {{- '}\n</tool_call>' }}
38
+ {%- endfor %}
39
+ {{- '<|im_end|>\n' }}
40
+ {%- elif message.role == "tool" %}
41
+ {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != "tool") %}
42
+ {{- '<|im_start|>user' }}
43
+ {%- endif %}
44
+ {{- '\n<tool_response>\n' }}
45
+ {{- message.content }}
46
+ {{- '\n</tool_response>' }}
47
+ {%- if loop.last or (messages[loop.index0 + 1].role != "tool") %}
48
+ {{- '<|im_end|>\n' }}
49
+ {%- endif %}
50
+ {%- endif %}
51
+ {%- endfor %}
52
+ {%- if add_generation_prompt %}
53
+ {{- '<|im_start|>assistant\n' }}
54
+ {%- endif %}
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
special_tokens_map.json ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": "<|im_end|>"
25
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:541e49d1eaeeeaae3fefdac94676746504706e91fd4df87ed11898af0644995e
3
+ size 11422173
tokenizer_config.json ADDED
@@ -0,0 +1,207 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "clean_up_tokenization_spaces": false,
199
+ "eos_token": "<|im_end|>",
200
+ "errors": "replace",
201
+ "extra_special_tokens": {},
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|im_end|>",
204
+ "split_special_tokens": false,
205
+ "tokenizer_class": "Qwen2Tokenizer",
206
+ "unk_token": null
207
+ }
vocab.json ADDED
The diff for this file is too large to render. See raw diff