Updated model card to reflect changes to model.
Browse files
README.md
CHANGED
|
@@ -17,7 +17,7 @@ the case with the baseline.
|
|
| 17 |
|
| 18 |
The architecture of this LoRA model follows that of the LLaMA-7b Alpaca-LoRA with the hyper-parameters:
|
| 19 |
```
|
| 20 |
-
LORA_R =
|
| 21 |
LORA_ALPHA = 16
|
| 22 |
LORA_DROPOUT= 0.05
|
| 23 |
LORA_TARGET_MODULES = [
|
|
@@ -28,8 +28,24 @@ LORA_TARGET_MODULES = [
|
|
| 28 |
]
|
| 29 |
```
|
| 30 |
The model was trained using PEFT for up to 3 epochs, with <code>load_best_model_at_end=True</code> set.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
|
| 32 |
-
It can be recombined with the baseline model to generate text:
|
| 33 |
```
|
| 34 |
BASE_MODEL = "openlm-research/open_llama_7b_700bt_preview"
|
| 35 |
|
|
@@ -39,7 +55,6 @@ bmodel = LlamaForCausalLM.from_pretrained(
|
|
| 39 |
device_map="sequential"
|
| 40 |
)
|
| 41 |
|
| 42 |
-
|
| 43 |
peft_model_id = "starfishmedical/SFDocumentOracle-open_llama_7b_lora"
|
| 44 |
tokenizer = LlamaTokenizer.from_pretrained(peft_model_id)
|
| 45 |
|
|
|
|
| 17 |
|
| 18 |
The architecture of this LoRA model follows that of the LLaMA-7b Alpaca-LoRA with the hyper-parameters:
|
| 19 |
```
|
| 20 |
+
LORA_R = 8
|
| 21 |
LORA_ALPHA = 16
|
| 22 |
LORA_DROPOUT= 0.05
|
| 23 |
LORA_TARGET_MODULES = [
|
|
|
|
| 28 |
]
|
| 29 |
```
|
| 30 |
The model was trained using PEFT for up to 3 epochs, with <code>load_best_model_at_end=True</code> set.
|
| 31 |
+
The learning rate was set to 5e-5, so the minimal validation loss occurred very near to the end of training.
|
| 32 |
+
|
| 33 |
+
Both the combined model and adapter weights are available.
|
| 34 |
+
|
| 35 |
+
The combined model can be loaded and used right out of the box:
|
| 36 |
+
```
|
| 37 |
+
BASE_MODEL = "StarFish-DocOracle"
|
| 38 |
+
|
| 39 |
+
model = LlamaForCausalLM.from_pretrained(
|
| 40 |
+
BASE_MODEL,
|
| 41 |
+
torch_dtype=torch.float16,
|
| 42 |
+
device_map="sequential"
|
| 43 |
+
)
|
| 44 |
+
tokenizer = LlamaTokenizer.from_pretrained(BASE_MODEL)
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
The adapter can be recombined with the baseline model to generate text:
|
| 48 |
|
|
|
|
| 49 |
```
|
| 50 |
BASE_MODEL = "openlm-research/open_llama_7b_700bt_preview"
|
| 51 |
|
|
|
|
| 55 |
device_map="sequential"
|
| 56 |
)
|
| 57 |
|
|
|
|
| 58 |
peft_model_id = "starfishmedical/SFDocumentOracle-open_llama_7b_lora"
|
| 59 |
tokenizer = LlamaTokenizer.from_pretrained(peft_model_id)
|
| 60 |
|