Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,8 +1,10 @@
|
|
| 1 |
-
# app.py — Voice Clarity Booster with Presets,
|
| 2 |
-
# A/B alternating,
|
| 3 |
#
|
| 4 |
-
#
|
| 5 |
-
#
|
|
|
|
|
|
|
| 6 |
|
| 7 |
import os
|
| 8 |
import tempfile
|
|
@@ -50,9 +52,9 @@ except Exception:
|
|
| 50 |
# -----------------------------
|
| 51 |
USE_GPU = torch.cuda.is_available()
|
| 52 |
# On CPU, SepFormer is extremely slow; avoid for long clips (or disable).
|
| 53 |
-
MAX_SEPFORMER_SEC_CPU = float(os.getenv("MAX_SEPFORMER_SEC_CPU", 12))
|
| 54 |
-
MAX_SEPFORMER_SEC_GPU = float(os.getenv("MAX_SEPFORMER_SEC_GPU", 180))
|
| 55 |
-
ALLOW_SEPFORMER_CPU = os.getenv("ALLOW_SEPFORMER_CPU", "0") == "1"
|
| 56 |
|
| 57 |
_DEVICE = "cuda" if USE_GPU else "cpu"
|
| 58 |
_ENHANCER_METRICGAN: Optional[SpectralMaskEnhancement] = None
|
|
@@ -117,6 +119,12 @@ def _highpass(wav: torch.Tensor, sr: int, cutoff_hz: float) -> torch.Tensor:
|
|
| 117 |
return torchaudio.functional.highpass_biquad(wav, sr, cutoff_hz)
|
| 118 |
|
| 119 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 120 |
def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
|
| 121 |
if abs(gain_db) < 1e-6:
|
| 122 |
return wav
|
|
@@ -138,6 +146,20 @@ def _align_lengths(a: np.ndarray, b: np.ndarray) -> Tuple[np.ndarray, np.ndarray
|
|
| 138 |
return a[:n], b[:n]
|
| 139 |
|
| 140 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
def _loudness_match_to_ref(ref: np.ndarray, cand: np.ndarray, sr: int) -> Tuple[np.ndarray, str]:
|
| 142 |
"""Match cand loudness to ref (LUFS if available, else RMS)."""
|
| 143 |
if len(ref) < sr // 10 or len(cand) < sr // 10:
|
|
@@ -180,6 +202,59 @@ def _make_ab_alternating(orig: np.ndarray, enh: np.ndarray, sr: int, seg_sec: fl
|
|
| 180 |
return np.concatenate(out, axis=0).astype(np.float32)
|
| 181 |
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
# -----------------------------
|
| 184 |
# Model runners (with guards)
|
| 185 |
# -----------------------------
|
|
@@ -250,6 +325,50 @@ def _run_dual_stage(path_16k: str, dur_sec: float) -> Tuple[Optional[torch.Tenso
|
|
| 250 |
pass
|
| 251 |
|
| 252 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 253 |
# -----------------------------
|
| 254 |
# Core pipeline
|
| 255 |
# -----------------------------
|
|
@@ -261,9 +380,9 @@ def _enhance_numpy_audio(
|
|
| 261 |
lowcut_hz: float = 0.0,
|
| 262 |
out_sr: Optional[int] = None,
|
| 263 |
loudness_match: bool = True,
|
| 264 |
-
) -> Tuple[int, np.ndarray,
|
| 265 |
"""
|
| 266 |
-
Returns: (sr_out, enhanced,
|
| 267 |
"""
|
| 268 |
sr_in, wav_np = audio
|
| 269 |
wav_mono = _sanitize(_to_mono(wav_np))
|
|
@@ -271,7 +390,7 @@ def _enhance_numpy_audio(
|
|
| 271 |
if wav_mono.size < 32:
|
| 272 |
sr_out = sr_in if sr_in else 16000
|
| 273 |
silence = np.zeros(int(sr_out * 1.0), dtype=np.float32)
|
| 274 |
-
return sr_out, silence,
|
| 275 |
|
| 276 |
dry_t = torch.from_numpy(wav_mono).unsqueeze(0) # [1, T @ sr_in]
|
| 277 |
wav_16k = _resample_torch(dry_t, sr_in, 16000)
|
|
@@ -332,12 +451,9 @@ def _enhance_numpy_audio(
|
|
| 332 |
|
| 333 |
enhanced = _sanitize(enhanced)
|
| 334 |
|
| 335 |
-
# Delta
|
| 336 |
-
delta = _sanitize(dry_out - enhanced)
|
| 337 |
-
|
| 338 |
# Metrics
|
| 339 |
eps = 1e-9
|
| 340 |
-
|
| 341 |
metrics = (
|
| 342 |
f"Mode: {mode} | Dry/Wet: {dry_wet*100:.0f}% | Presence: {presence_db:+.1f} dB | "
|
| 343 |
f"Low-cut: {lowcut_hz:.0f} Hz | Loudness match: {loud_text} | Device: {'GPU' if USE_GPU else 'CPU'} | "
|
|
@@ -345,9 +461,9 @@ def _enhance_numpy_audio(
|
|
| 345 |
)
|
| 346 |
if fallback_note:
|
| 347 |
metrics += f"\n{fallback_note}"
|
| 348 |
-
metrics += f"\nΔ RMS: {20*np.log10(
|
| 349 |
|
| 350 |
-
return sr_out, enhanced,
|
| 351 |
|
| 352 |
|
| 353 |
# -----------------------------
|
|
@@ -433,13 +549,18 @@ def gradio_enhance(
|
|
| 433 |
lowcut_hz: float,
|
| 434 |
output_sr: str,
|
| 435 |
loudness_match: bool,
|
|
|
|
|
|
|
|
|
|
| 436 |
):
|
| 437 |
if audio is None:
|
| 438 |
return None, None, None, "No audio provided."
|
| 439 |
out_sr = None
|
| 440 |
if output_sr in {"44100", "48000"}:
|
| 441 |
out_sr = int(output_sr)
|
| 442 |
-
|
|
|
|
|
|
|
| 443 |
audio,
|
| 444 |
mode=mode,
|
| 445 |
dry_wet=dry_wet_pct / 100.0,
|
|
@@ -448,18 +569,44 @@ def gradio_enhance(
|
|
| 448 |
out_sr=out_sr,
|
| 449 |
loudness_match=bool(loudness_match),
|
| 450 |
)
|
| 451 |
-
|
|
|
|
| 452 |
sr_in, wav_np = audio
|
| 453 |
orig_mono = _sanitize(_to_mono(wav_np))
|
| 454 |
orig_at_out = _resample_torch(torch.from_numpy(orig_mono).unsqueeze(0), sr_in, sr_out).squeeze(0).numpy().astype(np.float32)
|
| 455 |
-
|
| 456 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 457 |
return (sr_out, enhanced), (sr_out, ab_alt), (sr_out, delta), metrics
|
| 458 |
|
| 459 |
|
| 460 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 461 |
gr.Markdown(
|
| 462 |
-
f"## Voice Clarity Booster — Presets, A/B, Delta
|
| 463 |
f"**Device:** {'GPU' if USE_GPU else 'CPU'} · "
|
| 464 |
f"SepFormer limits — CPU≤{MAX_SEPFORMER_SEC_CPU:.0f}s, GPU≤{MAX_SEPFORMER_SEC_GPU:.0f}s"
|
| 465 |
+ ("" if USE_GPU or ALLOW_SEPFORMER_CPU else " · (SepFormer disabled on CPU)")
|
|
@@ -505,6 +652,16 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 505 |
label="Output Sample Rate",
|
| 506 |
)
|
| 507 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 508 |
preset.change(
|
| 509 |
_apply_preset,
|
| 510 |
inputs=[preset],
|
|
@@ -516,12 +673,12 @@ with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
|
| 516 |
with gr.Column(scale=1):
|
| 517 |
out_audio = gr.Audio(type="numpy", label="Enhanced (autoplay)", autoplay=True)
|
| 518 |
ab_audio = gr.Audio(type="numpy", label="A/B Alternating (2s O → 2s E)")
|
| 519 |
-
delta_audio = gr.Audio(type="numpy", label="Delta
|
| 520 |
metrics = gr.Markdown("")
|
| 521 |
|
| 522 |
btn.click(
|
| 523 |
gradio_enhance,
|
| 524 |
-
inputs=[in_audio, mode, dry_wet, presence, lowcut, out_sr, loudmatch],
|
| 525 |
outputs=[out_audio, ab_audio, delta_audio, metrics],
|
| 526 |
)
|
| 527 |
|
|
|
|
| 1 |
+
# app.py — Voice Clarity Booster with Presets, CPU/GPU-smart Dual-Stage,
|
| 2 |
+
# A/B alternating, Loudness Match, and a *polished Delta* (noise-only) option.
|
| 3 |
#
|
| 4 |
+
# New:
|
| 5 |
+
# - Delta Mode: Raw Difference | Spectral Residual (noise-only)
|
| 6 |
+
# - Delta Alignment (cross-correlation) to reduce phase/latency smear
|
| 7 |
+
# - Delta Gain (dB) + HPF/LPF + RMS leveling for listenable delta
|
| 8 |
|
| 9 |
import os
|
| 10 |
import tempfile
|
|
|
|
| 52 |
# -----------------------------
|
| 53 |
USE_GPU = torch.cuda.is_available()
|
| 54 |
# On CPU, SepFormer is extremely slow; avoid for long clips (or disable).
|
| 55 |
+
MAX_SEPFORMER_SEC_CPU = float(os.getenv("MAX_SEPFORMER_SEC_CPU", 12))
|
| 56 |
+
MAX_SEPFORMER_SEC_GPU = float(os.getenv("MAX_SEPFORMER_SEC_GPU", 180))
|
| 57 |
+
ALLOW_SEPFORMER_CPU = os.getenv("ALLOW_SEPFORMER_CPU", "0") == "1"
|
| 58 |
|
| 59 |
_DEVICE = "cuda" if USE_GPU else "cpu"
|
| 60 |
_ENHANCER_METRICGAN: Optional[SpectralMaskEnhancement] = None
|
|
|
|
| 119 |
return torchaudio.functional.highpass_biquad(wav, sr, cutoff_hz)
|
| 120 |
|
| 121 |
|
| 122 |
+
def _lowpass(wav: torch.Tensor, sr: int, cutoff_hz: float) -> torch.Tensor:
|
| 123 |
+
if cutoff_hz is None or cutoff_hz <= 0:
|
| 124 |
+
return wav
|
| 125 |
+
return torchaudio.functional.lowpass_biquad(wav, sr, cutoff_hz)
|
| 126 |
+
|
| 127 |
+
|
| 128 |
def _presence_boost(wav: torch.Tensor, sr: int, gain_db: float) -> torch.Tensor:
|
| 129 |
if abs(gain_db) < 1e-6:
|
| 130 |
return wav
|
|
|
|
| 146 |
return a[:n], b[:n]
|
| 147 |
|
| 148 |
|
| 149 |
+
def _rms(x: np.ndarray, eps: float = 1e-9) -> float:
|
| 150 |
+
return float(np.sqrt(np.mean(x**2) + eps))
|
| 151 |
+
|
| 152 |
+
|
| 153 |
+
def _rms_target(x: np.ndarray, target_dbfs: float = -20.0) -> np.ndarray:
|
| 154 |
+
"""Scale to approx target dBFS RMS, then hard-limit peaks."""
|
| 155 |
+
target_amp = 10.0 ** (target_dbfs / 20.0)
|
| 156 |
+
cur = _rms(x)
|
| 157 |
+
if cur > 0:
|
| 158 |
+
x = x * (target_amp / cur)
|
| 159 |
+
x = np.clip(x, -1.0, 1.0).astype(np.float32)
|
| 160 |
+
return x
|
| 161 |
+
|
| 162 |
+
|
| 163 |
def _loudness_match_to_ref(ref: np.ndarray, cand: np.ndarray, sr: int) -> Tuple[np.ndarray, str]:
|
| 164 |
"""Match cand loudness to ref (LUFS if available, else RMS)."""
|
| 165 |
if len(ref) < sr // 10 or len(cand) < sr // 10:
|
|
|
|
| 202 |
return np.concatenate(out, axis=0).astype(np.float32)
|
| 203 |
|
| 204 |
|
| 205 |
+
# -----------------------------
|
| 206 |
+
# Alignment for delta (cross-correlation)
|
| 207 |
+
# -----------------------------
|
| 208 |
+
def _next_pow_two(n: int) -> int:
|
| 209 |
+
n -= 1
|
| 210 |
+
shift = 1
|
| 211 |
+
while (n + 1) & n:
|
| 212 |
+
n |= n >> shift
|
| 213 |
+
shift <<= 1
|
| 214 |
+
return n + 1
|
| 215 |
+
|
| 216 |
+
|
| 217 |
+
def _align_by_xcorr(a: np.ndarray, b: np.ndarray, max_shift: int) -> Tuple[np.ndarray, np.ndarray, int]:
|
| 218 |
+
"""
|
| 219 |
+
Align b to a using FFT cross-correlation. Only accept shifts within ±max_shift.
|
| 220 |
+
Returns (a_aligned, b_aligned, shift) where positive shift means b lags a and is shifted forward.
|
| 221 |
+
"""
|
| 222 |
+
# Pad to same length
|
| 223 |
+
n = max(len(a), len(b))
|
| 224 |
+
a_pad = np.zeros(n, dtype=np.float32); a_pad[:len(a)] = a
|
| 225 |
+
b_pad = np.zeros(n, dtype=np.float32); b_pad[:len(b)] = b
|
| 226 |
+
|
| 227 |
+
N = _next_pow_two(2 * n - 1)
|
| 228 |
+
A = np.fft.rfft(a_pad, N)
|
| 229 |
+
B = np.fft.rfft(b_pad, N)
|
| 230 |
+
corr = np.fft.irfft(A * np.conj(B), N)
|
| 231 |
+
# lags: 0..N-1, convert so center at zero lag
|
| 232 |
+
corr = np.concatenate((corr[-(n-1):], corr[:n]))
|
| 233 |
+
lags = np.arange(-(n-1), n)
|
| 234 |
+
|
| 235 |
+
# Limit to window
|
| 236 |
+
w = (lags >= -max_shift) & (lags <= max_shift)
|
| 237 |
+
lag = int(lags[w][np.argmax(corr[w])])
|
| 238 |
+
|
| 239 |
+
if lag > 0:
|
| 240 |
+
# b lags behind a -> shift b forward
|
| 241 |
+
b_shift = np.concatenate((b[lag:], np.zeros(lag, dtype=np.float32)))
|
| 242 |
+
a_shift = a[:len(b_shift)]
|
| 243 |
+
b_shift = b_shift[:len(a_shift)]
|
| 244 |
+
return a_shift, b_shift, lag
|
| 245 |
+
elif lag < 0:
|
| 246 |
+
# a lags -> shift a forward
|
| 247 |
+
lag = -lag
|
| 248 |
+
a_shift = np.concatenate((a[lag:], np.zeros(lag, dtype=np.float32)))
|
| 249 |
+
b_shift = b[:len(a_shift)]
|
| 250 |
+
a_shift = a_shift[:len(b_shift)]
|
| 251 |
+
return a_shift, b_shift, -lag
|
| 252 |
+
else:
|
| 253 |
+
# no shift
|
| 254 |
+
a2, b2 = _align_lengths(a, b)
|
| 255 |
+
return a2, b2, 0
|
| 256 |
+
|
| 257 |
+
|
| 258 |
# -----------------------------
|
| 259 |
# Model runners (with guards)
|
| 260 |
# -----------------------------
|
|
|
|
| 325 |
pass
|
| 326 |
|
| 327 |
|
| 328 |
+
# -----------------------------
|
| 329 |
+
# Spectral residual delta (cleaner noise-only preview)
|
| 330 |
+
# -----------------------------
|
| 331 |
+
def _delta_spectral_residual(orig: np.ndarray, enh: np.ndarray, sr: int) -> np.ndarray:
|
| 332 |
+
"""
|
| 333 |
+
Build a noise-focused residual via STFT magnitudes:
|
| 334 |
+
R_mag = ReLU(|X| - |Y|)
|
| 335 |
+
use original phase for iSTFT reconstruction
|
| 336 |
+
Then gentle HPF/LPF and RMS leveling for listenability.
|
| 337 |
+
"""
|
| 338 |
+
# Torch tensors
|
| 339 |
+
x = torch.from_numpy(orig).to(torch.float32)
|
| 340 |
+
y = torch.from_numpy(enh).to(torch.float32)
|
| 341 |
+
|
| 342 |
+
n_fft = 1024
|
| 343 |
+
hop = 256
|
| 344 |
+
win = torch.hann_window(n_fft)
|
| 345 |
+
|
| 346 |
+
# STFTs
|
| 347 |
+
X = torch.stft(x, n_fft=n_fft, hop_length=hop, window=win, return_complex=True, center=True)
|
| 348 |
+
Y = torch.stft(y, n_fft=n_fft, hop_length=hop, window=win, return_complex=True, center=True)
|
| 349 |
+
|
| 350 |
+
# Positive residual magnitudes
|
| 351 |
+
R_mag = torch.relu(torch.abs(X) - torch.abs(Y))
|
| 352 |
+
|
| 353 |
+
# Mild temporal smoothing (moving average across time)
|
| 354 |
+
R_mag = torch.nn.functional.avg_pool1d(
|
| 355 |
+
R_mag.unsqueeze(0), kernel_size=3, stride=1, padding=1
|
| 356 |
+
).squeeze(0)
|
| 357 |
+
|
| 358 |
+
# Reconstruct residual with original phase
|
| 359 |
+
phase = torch.angle(X)
|
| 360 |
+
R_complex = torch.polar(R_mag, phase)
|
| 361 |
+
r = torch.istft(R_complex, n_fft=n_fft, hop_length=hop, window=win, length=len(orig))
|
| 362 |
+
|
| 363 |
+
# HPF/LPF + light RMS leveling for comfort
|
| 364 |
+
r_t = r.unsqueeze(0)
|
| 365 |
+
r_t = _highpass(r_t, sr, cutoff_hz=80.0)
|
| 366 |
+
r_t = _lowpass(r_t, sr, cutoff_hz=9000.0)
|
| 367 |
+
r_np = r_t.squeeze(0).numpy().astype(np.float32)
|
| 368 |
+
r_np = _rms_target(r_np, target_dbfs=-24.0)
|
| 369 |
+
return r_np
|
| 370 |
+
|
| 371 |
+
|
| 372 |
# -----------------------------
|
| 373 |
# Core pipeline
|
| 374 |
# -----------------------------
|
|
|
|
| 380 |
lowcut_hz: float = 0.0,
|
| 381 |
out_sr: Optional[int] = None,
|
| 382 |
loudness_match: bool = True,
|
| 383 |
+
) -> Tuple[int, np.ndarray, str]:
|
| 384 |
"""
|
| 385 |
+
Returns: (sr_out, enhanced, metrics_text)
|
| 386 |
"""
|
| 387 |
sr_in, wav_np = audio
|
| 388 |
wav_mono = _sanitize(_to_mono(wav_np))
|
|
|
|
| 390 |
if wav_mono.size < 32:
|
| 391 |
sr_out = sr_in if sr_in else 16000
|
| 392 |
silence = np.zeros(int(sr_out * 1.0), dtype=np.float32)
|
| 393 |
+
return sr_out, silence, "Input too short; returned silence."
|
| 394 |
|
| 395 |
dry_t = torch.from_numpy(wav_mono).unsqueeze(0) # [1, T @ sr_in]
|
| 396 |
wav_16k = _resample_torch(dry_t, sr_in, 16000)
|
|
|
|
| 451 |
|
| 452 |
enhanced = _sanitize(enhanced)
|
| 453 |
|
|
|
|
|
|
|
|
|
|
| 454 |
# Metrics
|
| 455 |
eps = 1e-9
|
| 456 |
+
rms_delta_hint = np.sqrt(np.mean((dry_out - enhanced)**2) + eps)
|
| 457 |
metrics = (
|
| 458 |
f"Mode: {mode} | Dry/Wet: {dry_wet*100:.0f}% | Presence: {presence_db:+.1f} dB | "
|
| 459 |
f"Low-cut: {lowcut_hz:.0f} Hz | Loudness match: {loud_text} | Device: {'GPU' if USE_GPU else 'CPU'} | "
|
|
|
|
| 461 |
)
|
| 462 |
if fallback_note:
|
| 463 |
metrics += f"\n{fallback_note}"
|
| 464 |
+
metrics += f"\nΔ (raw) RMS: {20*np.log10(rms_delta_hint+eps):+.2f} dBFS"
|
| 465 |
|
| 466 |
+
return sr_out, enhanced, metrics
|
| 467 |
|
| 468 |
|
| 469 |
# -----------------------------
|
|
|
|
| 549 |
lowcut_hz: float,
|
| 550 |
output_sr: str,
|
| 551 |
loudness_match: bool,
|
| 552 |
+
delta_mode: str,
|
| 553 |
+
delta_align: bool,
|
| 554 |
+
delta_gain_db: float,
|
| 555 |
):
|
| 556 |
if audio is None:
|
| 557 |
return None, None, None, "No audio provided."
|
| 558 |
out_sr = None
|
| 559 |
if output_sr in {"44100", "48000"}:
|
| 560 |
out_sr = int(output_sr)
|
| 561 |
+
|
| 562 |
+
# Enhance
|
| 563 |
+
sr_out, enhanced, metrics = _enhance_numpy_audio(
|
| 564 |
audio,
|
| 565 |
mode=mode,
|
| 566 |
dry_wet=dry_wet_pct / 100.0,
|
|
|
|
| 569 |
out_sr=out_sr,
|
| 570 |
loudness_match=bool(loudness_match),
|
| 571 |
)
|
| 572 |
+
|
| 573 |
+
# Build A/B and Delta (polished)
|
| 574 |
sr_in, wav_np = audio
|
| 575 |
orig_mono = _sanitize(_to_mono(wav_np))
|
| 576 |
orig_at_out = _resample_torch(torch.from_numpy(orig_mono).unsqueeze(0), sr_in, sr_out).squeeze(0).numpy().astype(np.float32)
|
| 577 |
+
|
| 578 |
+
# Optional alignment to reduce phase/latency offsets
|
| 579 |
+
a_for_ab, b_for_ab = _align_lengths(orig_at_out, enhanced)
|
| 580 |
+
if delta_align:
|
| 581 |
+
max_shift = int(0.05 * sr_out) # up to 50 ms
|
| 582 |
+
a_for_ab, b_for_ab, lag = _align_by_xcorr(a_for_ab, b_for_ab, max_shift=max_shift)
|
| 583 |
+
metrics += f"\nDelta alignment: shift={lag} samples"
|
| 584 |
+
|
| 585 |
+
# A/B alternating
|
| 586 |
+
ab_alt = _make_ab_alternating(a_for_ab, b_for_ab, sr_out, seg_sec=2.0)
|
| 587 |
+
|
| 588 |
+
# Delta (noise-focused if selected)
|
| 589 |
+
if delta_mode.startswith("Spectral"):
|
| 590 |
+
delta = _delta_spectral_residual(a_for_ab, b_for_ab, sr_out)
|
| 591 |
+
else:
|
| 592 |
+
delta = a_for_ab - b_for_ab
|
| 593 |
+
# Gentle polish on raw difference
|
| 594 |
+
d_t = torch.from_numpy(delta).unsqueeze(0)
|
| 595 |
+
d_t = _highpass(d_t, sr_out, cutoff_hz=80.0)
|
| 596 |
+
d_t = _lowpass(d_t, sr_out, cutoff_hz=9000.0)
|
| 597 |
+
delta = d_t.squeeze(0).numpy().astype(np.float32)
|
| 598 |
+
delta = _rms_target(delta, target_dbfs=-24.0)
|
| 599 |
+
|
| 600 |
+
# Apply user delta gain
|
| 601 |
+
delta *= 10.0 ** (delta_gain_db / 20.0)
|
| 602 |
+
delta = np.clip(delta, -1.0, 1.0).astype(np.float32)
|
| 603 |
+
|
| 604 |
return (sr_out, enhanced), (sr_out, ab_alt), (sr_out, delta), metrics
|
| 605 |
|
| 606 |
|
| 607 |
with gr.Blocks(theme=gr.themes.Soft()) as demo:
|
| 608 |
gr.Markdown(
|
| 609 |
+
f"## Voice Clarity Booster — Presets, A/B, *Polished Delta*, Loudness Match \n"
|
| 610 |
f"**Device:** {'GPU' if USE_GPU else 'CPU'} · "
|
| 611 |
f"SepFormer limits — CPU≤{MAX_SEPFORMER_SEC_CPU:.0f}s, GPU≤{MAX_SEPFORMER_SEC_GPU:.0f}s"
|
| 612 |
+ ("" if USE_GPU or ALLOW_SEPFORMER_CPU else " · (SepFormer disabled on CPU)")
|
|
|
|
| 652 |
label="Output Sample Rate",
|
| 653 |
)
|
| 654 |
|
| 655 |
+
# Delta controls
|
| 656 |
+
gr.Markdown("### Delta (what changed)")
|
| 657 |
+
delta_mode = gr.Dropdown(
|
| 658 |
+
choices=["Spectral Residual (noise-only)", "Raw Difference"],
|
| 659 |
+
value="Spectral Residual (noise-only)",
|
| 660 |
+
label="Delta Mode",
|
| 661 |
+
)
|
| 662 |
+
delta_align = gr.Checkbox(value=True, label="Align original & enhanced for delta (recommended)")
|
| 663 |
+
delta_gain = gr.Slider(minimum=-12, maximum=24, value=6, step=1, label="Delta Gain (dB)")
|
| 664 |
+
|
| 665 |
preset.change(
|
| 666 |
_apply_preset,
|
| 667 |
inputs=[preset],
|
|
|
|
| 673 |
with gr.Column(scale=1):
|
| 674 |
out_audio = gr.Audio(type="numpy", label="Enhanced (autoplay)", autoplay=True)
|
| 675 |
ab_audio = gr.Audio(type="numpy", label="A/B Alternating (2s O → 2s E)")
|
| 676 |
+
delta_audio = gr.Audio(type="numpy", label="Delta (polished)")
|
| 677 |
metrics = gr.Markdown("")
|
| 678 |
|
| 679 |
btn.click(
|
| 680 |
gradio_enhance,
|
| 681 |
+
inputs=[in_audio, mode, dry_wet, presence, lowcut, out_sr, loudmatch, delta_mode, delta_align, delta_gain],
|
| 682 |
outputs=[out_audio, ab_audio, delta_audio, metrics],
|
| 683 |
)
|
| 684 |
|