Update main.py
Browse files
main.py
CHANGED
|
@@ -1,44 +1,52 @@
|
|
| 1 |
-
import
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
from
|
| 6 |
-
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
img_bytes = await file.read()
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from fastapi import FastAPI, UploadFile, File, HTTPException
|
| 2 |
+
from fastapi.middleware.cors import CORSMiddleware
|
| 3 |
+
from PIL import Image
|
| 4 |
+
import torch
|
| 5 |
+
from transformers import AutoFeatureExtractor, AutoModelForImageClassification
|
| 6 |
+
import io, imghdr
|
| 7 |
+
|
| 8 |
+
# Initialize FastAPI app
|
| 9 |
+
app = FastAPI()
|
| 10 |
+
app.add_middleware(
|
| 11 |
+
CORSMiddleware,
|
| 12 |
+
allow_origins=["*"],
|
| 13 |
+
allow_methods=["POST"],
|
| 14 |
+
allow_headers=["*"],
|
| 15 |
+
)
|
| 16 |
+
|
| 17 |
+
# Load the model + labels
|
| 18 |
+
labels = ["Real", "AI"]
|
| 19 |
+
feature_extractor = AutoFeatureExtractor.from_pretrained("Nahrawy/AIorNot")
|
| 20 |
+
model = AutoModelForImageClassification.from_pretrained("Nahrawy/AIorNot")
|
| 21 |
+
|
| 22 |
+
@app.post("/analyze")
|
| 23 |
+
async def analyze(file: UploadFile = File(...)):
|
| 24 |
+
# Read image bytes
|
| 25 |
+
img_bytes = await file.read()
|
| 26 |
+
|
| 27 |
+
# Sanity check
|
| 28 |
+
if imghdr.what(None, img_bytes) is None:
|
| 29 |
+
raise HTTPException(status_code=400, detail="Uploaded file is not a valid image")
|
| 30 |
+
|
| 31 |
+
# Load image with PIL
|
| 32 |
+
try:
|
| 33 |
+
image = Image.open(io.BytesIO(img_bytes)).convert("RGB")
|
| 34 |
+
except Exception:
|
| 35 |
+
raise HTTPException(status_code=400, detail="Cannot open image")
|
| 36 |
+
|
| 37 |
+
# Run inference
|
| 38 |
+
inputs = feature_extractor(image, return_tensors="pt")
|
| 39 |
+
with torch.no_grad():
|
| 40 |
+
outputs = model(**inputs)
|
| 41 |
+
logits = outputs.logits
|
| 42 |
+
probs = torch.nn.functional.softmax(logits, dim=1)[0]
|
| 43 |
+
|
| 44 |
+
prediction = logits.argmax(-1).item()
|
| 45 |
+
label = labels[prediction]
|
| 46 |
+
confidence = float(probs[prediction])
|
| 47 |
+
|
| 48 |
+
return {
|
| 49 |
+
"label": label,
|
| 50 |
+
"confidence": confidence,
|
| 51 |
+
"scores": {labels[i]: float(probs[i]) for i in range(len(labels))}
|
| 52 |
+
}
|