from spaces import GPU import gradio as gr import torch import os import time from torchvision import models from joblib import load from extractor.visualise_vit_layer import VitGenerator from relax_vqa import get_deep_feature, process_video_feature, process_patches, get_frame_patches, flow_to_rgb, merge_fragments, concatenate_features from extractor.vf_extract import process_video_residual from model_regression import Mlp, preprocess_data from demo_test_gpu import evaluate_video_quality, load_model @GPU def run_relax_vqa(video_path, is_finetune, framerate, video_type): if not os.path.exists(video_path): return "❌ No video uploaded or the uploaded file has expired. Please upload again." print("CUDA available:", torch.cuda.is_available()) print("Current device:", torch.cuda.current_device()) config = { 'is_finetune': is_finetune, 'framerate': framerate, 'video_type': video_type, 'save_path': 'model/', 'train_data_name': 'lsvq_train', 'select_criteria': 'byrmse', 'video_path': video_path, 'video_name': os.path.splitext(os.path.basename(video_path))[0] } print(config['video_name']) print(config['video_path']) device = torch.device("cuda" if torch.cuda.is_available() else "cpu") resnet50 = models.resnet50(pretrained=True).to(device) vit = VitGenerator('vit_base', 16, device, evaluate=True, random=False, verbose=False) model_mlp = load_model(config, device) try: score, runtime = evaluate_video_quality(config, resnet50, vit, model_mlp, device) return f"Predicted Quality Score: {score:.4f} (in {runtime:.2f}s)" except Exception as e: return f"❌ Error: {str(e)}" finally: if "gradio" in video_path and os.path.exists(video_path): os.remove(video_path) demo = gr.Interface( fn=run_relax_vqa, inputs=[ gr.Video(label="Upload a Video (e.g. mp4)"), gr.Checkbox(label="Use Finetuning?", value=False), gr.Slider(label="Target Framerate (fps)", minimum=1, maximum=60, step=1, value=24), gr.Dropdown(label="Video Dataset Type", choices=["konvid_1k", "youtube_ugc", "live_vqc", "lsvq"], value="konvid_1k") ], outputs=gr.Textbox(label="Predicted Quality Score"), title="🎬 ReLaX-VQA Online Demo", description=( "Upload a short video and get the predicted perceptual quality score using the ReLaX-VQA model. " "You can try our test video from the " "demo video. " "

" # "⚙️ This demo is currently running on Hugging Face CPU Basic: 2 vCPU • 16 GB RAM." "⚙️ This demo is currently running on Hugging Face ZeroGPU Space: Dynamic resources (NVIDIA A100)." ), ) demo.launch()