Spaces:
Paused
Paused
| from scipy.ndimage import median_filter | |
| import json | |
| import numpy as np | |
| LOW = 250 | |
| HIGH = 4000 | |
| FPS = 100 | |
| BIN_FREQS = [ | |
| 43.06640625, 64.599609375, 86.1328125, 107.666015625, 129.19921875, 150.732421875, 172.265625, 193.798828125, | |
| 215.33203125, 236.865234375, 258.3984375, 279.931640625, 301.46484375, 322.998046875, 344.53125, 366.064453125, | |
| 387.59765625, 409.130859375, 430.6640625, 452.197265625, 495.263671875, 516.796875, 538.330078125, 581.396484375, | |
| 624.462890625, 645.99609375, 689.0625, 732.12890625, 775.1953125, 839.794921875, 882.861328125, 925.927734375, | |
| 990.52734375, 1055.126953125, 1098.193359375, 1184.326171875, 1248.92578125, 1313.525390625, 1399.658203125, | |
| 1485.791015625, 1571.923828125, 1658.056640625, 1765.72265625, 1873.388671875, 1981.0546875, 2088.720703125, | |
| 2217.919921875, 2347.119140625, 2497.8515625, 2627.05078125, 2799.31640625, 2950.048828125, 3143.84765625, | |
| 3316.11328125, 3509.912109375, 3725.244140625, 3940.576171875, 4177.44140625, 4435.83984375, 4694.23828125, | |
| 4974.169921875, 5275.634765625, 5577.099609375, 5921.630859375, 6266.162109375, 6653.759765625, 7041.357421875, | |
| 7450.48828125, 7902.685546875, 8376.416015625, 8871.6796875, 9388.4765625, 9948.33984375, 10551.26953125, | |
| 11175.732421875, 11843.26171875, 12553.857421875, 13285.986328125, 14082.71484375, 14922.509765625, 15805.37109375 | |
| ] | |
| BIN_FREQS = np.array(BIN_FREQS).round().astype(int) | |
| def to_uint8_list(arr): | |
| """Converts a numpy array to a list of uint8 values.""" | |
| scaled_arr = (arr * 255).astype(np.uint8) | |
| return scaled_arr.tolist() | |
| def apply_to_dict(d, func): | |
| """Recursively applies func to the leaf values of a nested dictionary.""" | |
| for key, value in d.items(): | |
| if isinstance(value, dict): | |
| apply_to_dict(value, func) | |
| else: | |
| d[key] = func(value) | |
| def convert_segments(input_data): | |
| segments_output = [] | |
| labels_output = [] | |
| # Extracting segments and appending to the respective lists | |
| for segment in input_data["segments"]: | |
| segments_output.append(segment["start"]) | |
| labels_output.append(segment["label"]) | |
| # Appending the end time of the last segment | |
| segments_output.append(input_data["segments"][-1]["end"]) | |
| return {"segments": segments_output, "labels": labels_output} | |
| def process(specs, struct, name): | |
| i_low = np.flatnonzero(BIN_FREQS < LOW) | |
| i_high = np.flatnonzero(BIN_FREQS > HIGH) | |
| i_mid = np.flatnonzero((LOW <= BIN_FREQS) & (BIN_FREQS <= HIGH)) | |
| # Compute the max energy value for each frequency band considering all instruments. | |
| max_low = specs[:, :, i_low].max() | |
| max_mid = specs[:, :, i_mid].max() | |
| max_high = specs[:, :, i_high].max() | |
| wavs_low, wavs_mid, wavs_high = [ | |
| specs[:, :, indices].mean(axis=-1) | |
| # spec[:, indices].mean(axis=1) | |
| for indices in [i_low, i_mid, i_high] | |
| ] | |
| wavs_low /= max_low | |
| wavs_mid /= max_mid | |
| wavs_high /= max_high | |
| assert wavs_low.max() <= 1.0 | |
| assert wavs_mid.max() <= 1.0 | |
| assert wavs_high.max() <= 1.0 | |
| navs_low = np.array([median_filter(wav, size=FPS) for wav in wavs_low]) | |
| navs_mid = np.array([median_filter(wav, size=FPS) for wav in wavs_mid]) | |
| navs_high = np.array([median_filter(wav, size=FPS) for wav in wavs_high]) | |
| navs_low = navs_low | |
| navs_mid = navs_low + navs_mid | |
| navs_high = navs_mid + navs_high | |
| max_nav = np.max([navs_low.max(), navs_mid.max(), navs_high.max()]) | |
| navs_low /= max_nav | |
| navs_mid /= max_nav | |
| navs_high /= max_nav | |
| assert navs_high.max() <= 1.0 | |
| data = { | |
| 'nav': {}, | |
| 'wav': {}, | |
| } | |
| for ( | |
| eg_low, eg_mid, eg_high, | |
| nav_low, nav_mid, nav_high, | |
| inst | |
| ) in zip( | |
| wavs_low, wavs_mid, wavs_high, | |
| navs_low, navs_mid, navs_high, | |
| [ | |
| 'bass', | |
| 'drum', | |
| 'other', | |
| 'vocal', | |
| ] | |
| ): | |
| data['wav'][inst] = { | |
| 'low': eg_low, | |
| 'mid': eg_mid, | |
| 'high': eg_high, | |
| } | |
| data['nav'][inst] = { | |
| 'low': nav_low, | |
| 'mid': nav_mid, | |
| 'high': nav_high, | |
| } | |
| apply_to_dict(data, to_uint8_list) | |
| data['duration'] = specs.shape[1] / FPS | |
| data['scores'] = { | |
| "segment": { | |
| "[email protected]":0, | |
| "[email protected]":0, | |
| "[email protected]":0, | |
| "[email protected]":0, | |
| "[email protected]":0, | |
| "[email protected]":0, | |
| "Ref-to-est deviation":0, | |
| "Est-to-ref deviation":0, | |
| "Pairwise Precision":0, | |
| "Pairwise Recall":0, | |
| "Pairwise F-measure":0, | |
| "Rand Index":0, | |
| "Adjusted Rand Index":0, | |
| "Mutual Information":0, | |
| "Adjusted Mutual Information":0, | |
| "Normalized Mutual Information":0, | |
| "NCE Over":0, | |
| "NCE Under":0, | |
| "NCE F-measure":0, | |
| "V Precision":0, | |
| "V Recall":0, | |
| "V-measure":0, | |
| "Accuracy":0 | |
| }, | |
| "beat": { | |
| "f1":0, | |
| "precision":0, | |
| "recall":0, | |
| "cmlt":0, | |
| "amlt":0 | |
| }, | |
| "downbeat": { | |
| "f1":0, | |
| "precision":0, | |
| "recall":0, | |
| "cmlt":0, | |
| "amlt":0 | |
| } | |
| } | |
| data['id'] = name | |
| data['truths'] = {'beats': struct['beats'], 'downbeats': struct['downbeats'], **convert_segments(struct)} | |
| data['inferences'] = data['truths'] | |
| filename = f'dissector/{name}.json' | |
| with open(filename, 'w') as file: | |
| file.write(json.dumps(data)) | |
| return filename | |
| def generate_dissector_data(name, result): | |
| specs = np.load(f'spec/{name}.npy') | |
| with open(f'struct/{name}.json') as f: | |
| struct = json.load(f) | |
| return process(specs, result, name) | |