Spaces:
Build error
Build error
Commit
·
5a7c06e
1
Parent(s):
be18558
- .DS_Store +0 -0
- .gradio/cached_examples/22/log.csv +2 -0
- .gradio/cached_examples/28/log.csv +2 -0
- .gradio/certificate.pem +31 -0
- LICENSE +0 -21
- app.py +163 -16
- app/__pycache__/config.cpython-310.pyc +0 -0
- app/__pycache__/model.cpython-310.pyc +0 -0
- app/__pycache__/model_architectures.cpython-310.pyc +0 -0
- app/config.py +18 -9
- app/model.py +10 -21
- app/model_architectures.py +65 -23
- app/sleep_quality_processing.py +0 -94
- app/video_processing.py +64 -56
- app_gpuzero.py +0 -64
- assets/.DS_Store +0 -0
- assets/models/FER_dynamic_LSTM.pt +3 -0
- assets/models/FER_static_ResNet50_AffectNet.pt +3 -0
- llm/mentalBERT.py +0 -73
- notebooks/pytorch-roberta-onnx.ipynb +0 -280
- onxxchatbot.py +0 -40
- tabs/FACS_analysis.py +9 -8
- tabs/__emotion_analysis.py +0 -36
- tabs/__pycache__/FACS_analysis.cpython-310.pyc +0 -0
- tabs/__pycache__/deception_detection.cpython-310.pyc +0 -0
- tabs/__pycache__/heart_rate_variability.cpython-310.pyc +0 -0
- tabs/__pycache__/speech_stress_analysis.cpython-310.pyc +0 -0
- tabs/__pycache__/speech_stress_analysis.cpython-312.pyc +0 -0
- tabs/__sentiment_analysis.py +0 -36
- tabs/deception_detection.py +601 -0
- tabs/heart_rate_variability.py +220 -0
- tabs/speech_stress_analysis.py +217 -95
- verify.py +0 -3
.DS_Store
CHANGED
|
Binary files a/.DS_Store and b/.DS_Store differ
|
|
|
.gradio/cached_examples/22/log.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
HRV Results,PPG Signal Plot,timestamp
|
| 2 |
+
Video too short. Please provide at least 10 seconds of footage.,,2024-11-11 07:13:23.866354
|
.gradio/cached_examples/28/log.csv
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Summary,Analysis Plots,Detailed Metrics,Recording Information,timestamp
|
| 2 |
+
Video too short. Please provide at least 10 seconds of footage.,,,,2024-11-11 07:17:26.515598
|
.gradio/certificate.pem
ADDED
|
@@ -0,0 +1,31 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
-----BEGIN CERTIFICATE-----
|
| 2 |
+
MIIFazCCA1OgAwIBAgIRAIIQz7DSQONZRGPgu2OCiwAwDQYJKoZIhvcNAQELBQAw
|
| 3 |
+
TzELMAkGA1UEBhMCVVMxKTAnBgNVBAoTIEludGVybmV0IFNlY3VyaXR5IFJlc2Vh
|
| 4 |
+
cmNoIEdyb3VwMRUwEwYDVQQDEwxJU1JHIFJvb3QgWDEwHhcNMTUwNjA0MTEwNDM4
|
| 5 |
+
WhcNMzUwNjA0MTEwNDM4WjBPMQswCQYDVQQGEwJVUzEpMCcGA1UEChMgSW50ZXJu
|
| 6 |
+
ZXQgU2VjdXJpdHkgUmVzZWFyY2ggR3JvdXAxFTATBgNVBAMTDElTUkcgUm9vdCBY
|
| 7 |
+
MTCCAiIwDQYJKoZIhvcNAQEBBQADggIPADCCAgoCggIBAK3oJHP0FDfzm54rVygc
|
| 8 |
+
h77ct984kIxuPOZXoHj3dcKi/vVqbvYATyjb3miGbESTtrFj/RQSa78f0uoxmyF+
|
| 9 |
+
0TM8ukj13Xnfs7j/EvEhmkvBioZxaUpmZmyPfjxwv60pIgbz5MDmgK7iS4+3mX6U
|
| 10 |
+
A5/TR5d8mUgjU+g4rk8Kb4Mu0UlXjIB0ttov0DiNewNwIRt18jA8+o+u3dpjq+sW
|
| 11 |
+
T8KOEUt+zwvo/7V3LvSye0rgTBIlDHCNAymg4VMk7BPZ7hm/ELNKjD+Jo2FR3qyH
|
| 12 |
+
B5T0Y3HsLuJvW5iB4YlcNHlsdu87kGJ55tukmi8mxdAQ4Q7e2RCOFvu396j3x+UC
|
| 13 |
+
B5iPNgiV5+I3lg02dZ77DnKxHZu8A/lJBdiB3QW0KtZB6awBdpUKD9jf1b0SHzUv
|
| 14 |
+
KBds0pjBqAlkd25HN7rOrFleaJ1/ctaJxQZBKT5ZPt0m9STJEadao0xAH0ahmbWn
|
| 15 |
+
OlFuhjuefXKnEgV4We0+UXgVCwOPjdAvBbI+e0ocS3MFEvzG6uBQE3xDk3SzynTn
|
| 16 |
+
jh8BCNAw1FtxNrQHusEwMFxIt4I7mKZ9YIqioymCzLq9gwQbooMDQaHWBfEbwrbw
|
| 17 |
+
qHyGO0aoSCqI3Haadr8faqU9GY/rOPNk3sgrDQoo//fb4hVC1CLQJ13hef4Y53CI
|
| 18 |
+
rU7m2Ys6xt0nUW7/vGT1M0NPAgMBAAGjQjBAMA4GA1UdDwEB/wQEAwIBBjAPBgNV
|
| 19 |
+
HRMBAf8EBTADAQH/MB0GA1UdDgQWBBR5tFnme7bl5AFzgAiIyBpY9umbbjANBgkq
|
| 20 |
+
hkiG9w0BAQsFAAOCAgEAVR9YqbyyqFDQDLHYGmkgJykIrGF1XIpu+ILlaS/V9lZL
|
| 21 |
+
ubhzEFnTIZd+50xx+7LSYK05qAvqFyFWhfFQDlnrzuBZ6brJFe+GnY+EgPbk6ZGQ
|
| 22 |
+
3BebYhtF8GaV0nxvwuo77x/Py9auJ/GpsMiu/X1+mvoiBOv/2X/qkSsisRcOj/KK
|
| 23 |
+
NFtY2PwByVS5uCbMiogziUwthDyC3+6WVwW6LLv3xLfHTjuCvjHIInNzktHCgKQ5
|
| 24 |
+
ORAzI4JMPJ+GslWYHb4phowim57iaztXOoJwTdwJx4nLCgdNbOhdjsnvzqvHu7Ur
|
| 25 |
+
TkXWStAmzOVyyghqpZXjFaH3pO3JLF+l+/+sKAIuvtd7u+Nxe5AW0wdeRlN8NwdC
|
| 26 |
+
jNPElpzVmbUq4JUagEiuTDkHzsxHpFKVK7q4+63SM1N95R1NbdWhscdCb+ZAJzVc
|
| 27 |
+
oyi3B43njTOQ5yOf+1CceWxG1bQVs5ZufpsMljq4Ui0/1lvh+wjChP4kqKOJ2qxq
|
| 28 |
+
4RgqsahDYVvTH9w7jXbyLeiNdd8XM2w9U/t7y0Ff/9yi0GE44Za4rF2LN9d11TPA
|
| 29 |
+
mRGunUHBcnWEvgJBQl9nJEiU0Zsnvgc/ubhPgXRR4Xq37Z0j4r7g1SgEEzwxA57d
|
| 30 |
+
emyPxgcYxn/eR44/KJ4EBs+lVDR3veyJm+kXQ99b21/+jh5Xos1AnX5iItreGCc=
|
| 31 |
+
-----END CERTIFICATE-----
|
LICENSE
DELETED
|
@@ -1,21 +0,0 @@
|
|
| 1 |
-
MIT License
|
| 2 |
-
|
| 3 |
-
Copyright (c) 2024 Elena Ryumina
|
| 4 |
-
|
| 5 |
-
Permission is hereby granted, free of charge, to any person obtaining a copy
|
| 6 |
-
of this software and associated documentation files (the "Software"), to deal
|
| 7 |
-
in the Software without restriction, including without limitation the rights
|
| 8 |
-
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
|
| 9 |
-
copies of the Software, and to permit persons to whom the Software is
|
| 10 |
-
furnished to do so, subject to the following conditions:
|
| 11 |
-
|
| 12 |
-
The above copyright notice and this permission notice shall be included in all
|
| 13 |
-
copies or substantial portions of the Software.
|
| 14 |
-
|
| 15 |
-
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
|
| 16 |
-
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
|
| 17 |
-
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
|
| 18 |
-
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
|
| 19 |
-
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
|
| 20 |
-
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
|
| 21 |
-
SOFTWARE.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app.py
CHANGED
|
@@ -4,36 +4,183 @@ import gradio as gr
|
|
| 4 |
from tabs.speech_stress_analysis import create_voice_stress_tab
|
| 5 |
from tabs.speech_emotion_recognition import create_emotion_recognition_tab
|
| 6 |
from tabs.FACS_analysis import create_facs_analysis_tab
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 7 |
|
| 8 |
-
#
|
| 9 |
-
|
|
|
|
| 10 |
|
| 11 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
TAB_STRUCTURE = [
|
| 13 |
("Visual Analysis", [
|
| 14 |
-
("FACS
|
|
|
|
|
|
|
| 15 |
]),
|
| 16 |
("Speech Analysis", [
|
| 17 |
("Speech Stress", create_voice_stress_tab),
|
| 18 |
-
("Speech Emotion", create_emotion_recognition_tab)
|
| 19 |
])
|
| 20 |
]
|
| 21 |
|
| 22 |
-
def create_demo():
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
for main_tab, sub_tabs in TAB_STRUCTURE:
|
| 27 |
with gr.Tab(main_tab):
|
| 28 |
-
with gr.
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 32 |
gr.HTML(DISCLAIMER_HTML)
|
|
|
|
| 33 |
return demo
|
| 34 |
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
|
| 38 |
if __name__ == "__main__":
|
| 39 |
-
|
|
|
|
| 4 |
from tabs.speech_stress_analysis import create_voice_stress_tab
|
| 5 |
from tabs.speech_emotion_recognition import create_emotion_recognition_tab
|
| 6 |
from tabs.FACS_analysis import create_facs_analysis_tab
|
| 7 |
+
from tabs.heart_rate_variability import create_heart_rate_variability_tab
|
| 8 |
+
from tabs.deception_detection import create_deception_detection_tab, load_models
|
| 9 |
+
import logging
|
| 10 |
+
import torch
|
| 11 |
+
from typing import Dict
|
| 12 |
|
| 13 |
+
# Configure logging
|
| 14 |
+
logging.basicConfig(level=logging.INFO)
|
| 15 |
+
logger = logging.getLogger(__name__)
|
| 16 |
|
| 17 |
+
# Custom CSS for better styling
|
| 18 |
+
CUSTOM_CSS = """
|
| 19 |
+
/* Global styles */
|
| 20 |
+
.gradio-container {
|
| 21 |
+
font-family: 'Arial', sans-serif;
|
| 22 |
+
max-width: 1200px;
|
| 23 |
+
margin: auto;
|
| 24 |
+
padding: 20px;
|
| 25 |
+
background-color: #f8f9fa;
|
| 26 |
+
}
|
| 27 |
+
|
| 28 |
+
/* Header styling */
|
| 29 |
+
h1 {
|
| 30 |
+
color: #2c3e50;
|
| 31 |
+
text-align: center;
|
| 32 |
+
padding: 20px 0;
|
| 33 |
+
margin-bottom: 30px;
|
| 34 |
+
border-bottom: 2px solid #3498db;
|
| 35 |
+
}
|
| 36 |
+
|
| 37 |
+
/* Tab navigation styling */
|
| 38 |
+
.gradio-tabs-nav {
|
| 39 |
+
background-color: #ffffff;
|
| 40 |
+
border-radius: 8px;
|
| 41 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 42 |
+
margin-bottom: 20px;
|
| 43 |
+
}
|
| 44 |
+
|
| 45 |
+
/* Content areas */
|
| 46 |
+
.content-area {
|
| 47 |
+
background: white;
|
| 48 |
+
padding: 20px;
|
| 49 |
+
border-radius: 8px;
|
| 50 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 51 |
+
margin-top: 20px;
|
| 52 |
+
}
|
| 53 |
+
|
| 54 |
+
/* Results area */
|
| 55 |
+
.results-area {
|
| 56 |
+
background-color: #ffffff;
|
| 57 |
+
padding: 20px;
|
| 58 |
+
border-radius: 8px;
|
| 59 |
+
margin-top: 20px;
|
| 60 |
+
box-shadow: 0 2px 4px rgba(0,0,0,0.1);
|
| 61 |
+
}
|
| 62 |
+
|
| 63 |
+
/* Disclaimer styling */
|
| 64 |
+
.disclaimer {
|
| 65 |
+
background-color: #f8f9fa;
|
| 66 |
+
border-left: 4px solid #3498db;
|
| 67 |
+
padding: 15px;
|
| 68 |
+
margin-top: 30px;
|
| 69 |
+
font-size: 0.9em;
|
| 70 |
+
color: #666;
|
| 71 |
+
}
|
| 72 |
+
"""
|
| 73 |
+
|
| 74 |
+
# HTML content
|
| 75 |
+
HEADER_HTML = """
|
| 76 |
+
<div style="text-align: center; padding: 20px;">
|
| 77 |
+
<h1>AI-Driven Multimodal Emotional State Analysis</h1>
|
| 78 |
+
<p style="font-size: 1.2em; color: #666;">
|
| 79 |
+
Comprehensive analysis of stress, emotion, and truthfulness through facial expressions,
|
| 80 |
+
heart rate variability, and speech patterns.
|
| 81 |
+
</p>
|
| 82 |
+
</div>
|
| 83 |
+
"""
|
| 84 |
+
|
| 85 |
+
DISCLAIMER_HTML = """
|
| 86 |
+
<div class="disclaimer">
|
| 87 |
+
<h3>Important Notice</h3>
|
| 88 |
+
<p>This application provides AI-driven analysis for:</p>
|
| 89 |
+
<ul>
|
| 90 |
+
<li>Stress and emotion detection</li>
|
| 91 |
+
<li>Heart rate variability analysis</li>
|
| 92 |
+
<li>Speech pattern analysis</li>
|
| 93 |
+
<li>Truth/deception indication</li>
|
| 94 |
+
</ul>
|
| 95 |
+
<p><strong>Disclaimer:</strong> This tool is for research and informational purposes only.
|
| 96 |
+
It should not be used as a substitute for professional medical advice, diagnosis, or treatment.
|
| 97 |
+
The deception detection feature is experimental and should not be used as definitive proof
|
| 98 |
+
of truthfulness or deception.</p>
|
| 99 |
+
</div>
|
| 100 |
+
"""
|
| 101 |
+
|
| 102 |
+
# Tab structure
|
| 103 |
TAB_STRUCTURE = [
|
| 104 |
("Visual Analysis", [
|
| 105 |
+
("FACS Analysis", create_facs_analysis_tab),
|
| 106 |
+
("Heart Rate Variability", create_heart_rate_variability_tab),
|
| 107 |
+
("Truth/Deception Detection", create_deception_detection_tab) # Pass models here
|
| 108 |
]),
|
| 109 |
("Speech Analysis", [
|
| 110 |
("Speech Stress", create_voice_stress_tab),
|
| 111 |
+
("Speech Emotion", create_emotion_recognition_tab)
|
| 112 |
])
|
| 113 |
]
|
| 114 |
|
| 115 |
+
def create_demo(models: Dict[str, torch.nn.Module]):
|
| 116 |
+
"""Create and configure the Gradio interface."""
|
| 117 |
+
with gr.Blocks(css=CUSTOM_CSS, title="Multimodal Emotional State Analysis") as demo:
|
| 118 |
+
# Header
|
| 119 |
+
gr.HTML(HEADER_HTML)
|
| 120 |
+
|
| 121 |
+
# Main content area with Tabs
|
| 122 |
+
with gr.Tabs():
|
| 123 |
for main_tab, sub_tabs in TAB_STRUCTURE:
|
| 124 |
with gr.Tab(main_tab):
|
| 125 |
+
with gr.Column():
|
| 126 |
+
with gr.Tabs():
|
| 127 |
+
for sub_tab, create_fn in sub_tabs:
|
| 128 |
+
with gr.Tab(sub_tab):
|
| 129 |
+
if main_tab == "Visual Analysis" and sub_tab == "Truth/Deception Detection":
|
| 130 |
+
# Pass loaded models to the deception detection tab
|
| 131 |
+
create_fn(models)
|
| 132 |
+
else:
|
| 133 |
+
create_fn()
|
| 134 |
+
# Add help information below sub-tabs
|
| 135 |
+
if main_tab == "Visual Analysis":
|
| 136 |
+
gr.Markdown("""
|
| 137 |
+
### Visual Analysis Features
|
| 138 |
+
- **FACS Analysis**: Facial Action Coding System for emotion detection
|
| 139 |
+
- **Heart Rate Variability**: Stress and wellness indicators
|
| 140 |
+
- **Truth/Deception Detection**: Physiological response analysis
|
| 141 |
+
|
| 142 |
+
**For best results:**
|
| 143 |
+
1. Use good lighting
|
| 144 |
+
2. Face the camera directly
|
| 145 |
+
3. Minimize movement during recording
|
| 146 |
+
""")
|
| 147 |
+
elif main_tab == "Speech Analysis":
|
| 148 |
+
gr.Markdown("""
|
| 149 |
+
### Speech Analysis Features
|
| 150 |
+
- **Speech Stress**: Voice stress analysis
|
| 151 |
+
- **Speech Emotion**: Emotional content detection
|
| 152 |
+
|
| 153 |
+
**For best results:**
|
| 154 |
+
1. Use a quiet environment
|
| 155 |
+
2. Speak clearly
|
| 156 |
+
3. Avoid background noise
|
| 157 |
+
""")
|
| 158 |
+
|
| 159 |
+
# Disclaimer
|
| 160 |
gr.HTML(DISCLAIMER_HTML)
|
| 161 |
+
|
| 162 |
return demo
|
| 163 |
|
| 164 |
+
def main():
|
| 165 |
+
"""Main function to run the application."""
|
| 166 |
+
# Load models once and pass them to the deception detection tab
|
| 167 |
+
models_loaded = load_models()
|
| 168 |
+
if not models_loaded:
|
| 169 |
+
logger.error("No models loaded. Exiting application.")
|
| 170 |
+
return
|
| 171 |
+
|
| 172 |
+
# Initialize Gradio interface
|
| 173 |
+
demo = create_demo(models_loaded)
|
| 174 |
+
|
| 175 |
+
# Configure and launch the interface
|
| 176 |
+
demo.queue() # Enable queuing without specific concurrency count
|
| 177 |
+
demo.launch(
|
| 178 |
+
server_name="0.0.0.0",
|
| 179 |
+
server_port=7860,
|
| 180 |
+
share=False,
|
| 181 |
+
debug=True,
|
| 182 |
+
show_error=True
|
| 183 |
+
)
|
| 184 |
|
| 185 |
if __name__ == "__main__":
|
| 186 |
+
main()
|
app/__pycache__/config.cpython-310.pyc
CHANGED
|
Binary files a/app/__pycache__/config.cpython-310.pyc and b/app/__pycache__/config.cpython-310.pyc differ
|
|
|
app/__pycache__/model.cpython-310.pyc
CHANGED
|
Binary files a/app/__pycache__/model.cpython-310.pyc and b/app/__pycache__/model.cpython-310.pyc differ
|
|
|
app/__pycache__/model_architectures.cpython-310.pyc
CHANGED
|
Binary files a/app/__pycache__/model_architectures.cpython-310.pyc and b/app/__pycache__/model_architectures.cpython-310.pyc differ
|
|
|
app/config.py
CHANGED
|
@@ -1,7 +1,8 @@
|
|
|
|
|
|
|
|
| 1 |
"""
|
| 2 |
File: config.py
|
| 3 |
-
|
| 4 |
-
Description: Configuration file.
|
| 5 |
License: MIT License
|
| 6 |
"""
|
| 7 |
|
|
@@ -9,25 +10,32 @@ import toml
|
|
| 9 |
from typing import Dict
|
| 10 |
from types import SimpleNamespace
|
| 11 |
|
| 12 |
-
|
| 13 |
def flatten_dict(prefix: str, d: Dict) -> Dict:
|
|
|
|
|
|
|
|
|
|
| 14 |
result = {}
|
| 15 |
-
|
| 16 |
for k, v in d.items():
|
| 17 |
if isinstance(v, dict):
|
| 18 |
result.update(flatten_dict(f"{prefix}{k}_", v))
|
| 19 |
else:
|
| 20 |
result[f"{prefix}{k}"] = v
|
| 21 |
-
|
| 22 |
return result
|
| 23 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
config_data = flatten_dict("", config)
|
| 28 |
|
| 29 |
-
|
|
|
|
| 30 |
|
|
|
|
| 31 |
DICT_EMO = {
|
| 32 |
0: "Neutral",
|
| 33 |
1: "Happiness",
|
|
@@ -38,6 +46,7 @@ DICT_EMO = {
|
|
| 38 |
6: "Anger",
|
| 39 |
}
|
| 40 |
|
|
|
|
| 41 |
COLORS = {
|
| 42 |
0: 'blue',
|
| 43 |
1: 'orange',
|
|
|
|
| 1 |
+
# config.py
|
| 2 |
+
|
| 3 |
"""
|
| 4 |
File: config.py
|
| 5 |
+
Description: Configuration file for the AI-Driven Multimodal Emotional State Analysis application.
|
|
|
|
| 6 |
License: MIT License
|
| 7 |
"""
|
| 8 |
|
|
|
|
| 10 |
from typing import Dict
|
| 11 |
from types import SimpleNamespace
|
| 12 |
|
|
|
|
| 13 |
def flatten_dict(prefix: str, d: Dict) -> Dict:
|
| 14 |
+
"""
|
| 15 |
+
Recursively flattens a nested dictionary, concatenating keys with underscores.
|
| 16 |
+
"""
|
| 17 |
result = {}
|
|
|
|
| 18 |
for k, v in d.items():
|
| 19 |
if isinstance(v, dict):
|
| 20 |
result.update(flatten_dict(f"{prefix}{k}_", v))
|
| 21 |
else:
|
| 22 |
result[f"{prefix}{k}"] = v
|
|
|
|
| 23 |
return result
|
| 24 |
|
| 25 |
+
# Load configuration from 'config.toml' if it exists
|
| 26 |
+
try:
|
| 27 |
+
config = toml.load("config.toml")
|
| 28 |
+
except FileNotFoundError:
|
| 29 |
+
config = {}
|
| 30 |
+
print("Warning: 'config.toml' not found. Using default configuration.")
|
| 31 |
|
| 32 |
+
# Flatten the configuration dictionary
|
| 33 |
+
config_data_dict = flatten_dict("", config)
|
|
|
|
| 34 |
|
| 35 |
+
# Convert the dictionary to a SimpleNamespace for easy attribute access
|
| 36 |
+
config_data = SimpleNamespace(**config_data_dict)
|
| 37 |
|
| 38 |
+
# Define emotion labels
|
| 39 |
DICT_EMO = {
|
| 40 |
0: "Neutral",
|
| 41 |
1: "Happiness",
|
|
|
|
| 46 |
6: "Anger",
|
| 47 |
}
|
| 48 |
|
| 49 |
+
# Define colors for plotting or UI elements
|
| 50 |
COLORS = {
|
| 51 |
0: 'blue',
|
| 52 |
1: 'orange',
|
app/model.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import torch
|
| 3 |
import torch.nn as nn
|
|
@@ -23,7 +25,12 @@ def load_model(model_class, model_path, *args, **kwargs):
|
|
| 23 |
model = model_class(*args, **kwargs).to(device)
|
| 24 |
if os.path.exists(model_path):
|
| 25 |
try:
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
model.eval()
|
| 28 |
logger.info(f"Model loaded successfully from {model_path}")
|
| 29 |
except Exception as e:
|
|
@@ -40,7 +47,7 @@ pth_model_static = load_model(ResNet50, STATIC_MODEL_PATH, num_classes=7, channe
|
|
| 40 |
pth_model_dynamic = load_model(LSTMPyTorch, DYNAMIC_MODEL_PATH, input_size=2048, hidden_size=256, num_layers=2, num_classes=7)
|
| 41 |
|
| 42 |
# Set up GradCAM
|
| 43 |
-
target_layers = [pth_model_static.
|
| 44 |
cam = GradCAM(model=pth_model_static, target_layers=target_layers)
|
| 45 |
|
| 46 |
# Define image preprocessing
|
|
@@ -54,25 +61,7 @@ def pth_processing(img):
|
|
| 54 |
img = pth_transform(img).unsqueeze(0).to(device)
|
| 55 |
return img
|
| 56 |
|
| 57 |
-
|
| 58 |
-
with torch.no_grad():
|
| 59 |
-
output = pth_model_static(pth_processing(img))
|
| 60 |
-
_, predicted = torch.max(output, 1)
|
| 61 |
-
return predicted.item()
|
| 62 |
-
|
| 63 |
-
def get_emotion_probabilities(img):
|
| 64 |
-
with torch.no_grad():
|
| 65 |
-
output = nn.functional.softmax(pth_model_static(pth_processing(img)), dim=1)
|
| 66 |
-
return output.squeeze().cpu().numpy()
|
| 67 |
-
|
| 68 |
-
def generate_cam(img):
|
| 69 |
-
input_tensor = pth_processing(img)
|
| 70 |
-
targets = [ClassifierOutputTarget(predict_emotion(img))]
|
| 71 |
-
grayscale_cam = cam(input_tensor=input_tensor, targets=targets)
|
| 72 |
-
return grayscale_cam[0, :]
|
| 73 |
-
|
| 74 |
-
# Add any other necessary functions or variables here
|
| 75 |
|
| 76 |
if __name__ == "__main__":
|
| 77 |
logger.info("Model initialization complete.")
|
| 78 |
-
# You can add some test code here to verify everything is working correctly
|
|
|
|
| 1 |
+
# model.py
|
| 2 |
+
|
| 3 |
import os
|
| 4 |
import torch
|
| 5 |
import torch.nn as nn
|
|
|
|
| 25 |
model = model_class(*args, **kwargs).to(device)
|
| 26 |
if os.path.exists(model_path):
|
| 27 |
try:
|
| 28 |
+
state_dict = torch.load(model_path, map_location=device)
|
| 29 |
+
missing_keys, unexpected_keys = model.load_state_dict(state_dict, strict=False)
|
| 30 |
+
if missing_keys:
|
| 31 |
+
logger.warning(f"Missing keys when loading model from {model_path}: {missing_keys}")
|
| 32 |
+
if unexpected_keys:
|
| 33 |
+
logger.warning(f"Unexpected keys when loading model from {model_path}: {unexpected_keys}")
|
| 34 |
model.eval()
|
| 35 |
logger.info(f"Model loaded successfully from {model_path}")
|
| 36 |
except Exception as e:
|
|
|
|
| 47 |
pth_model_dynamic = load_model(LSTMPyTorch, DYNAMIC_MODEL_PATH, input_size=2048, hidden_size=256, num_layers=2, num_classes=7)
|
| 48 |
|
| 49 |
# Set up GradCAM
|
| 50 |
+
target_layers = [pth_model_static.layer4[-1]] # Adjusted to match the updated model
|
| 51 |
cam = GradCAM(model=pth_model_static, target_layers=target_layers)
|
| 52 |
|
| 53 |
# Define image preprocessing
|
|
|
|
| 61 |
img = pth_transform(img).unsqueeze(0).to(device)
|
| 62 |
return img
|
| 63 |
|
| 64 |
+
# Additional utility functions...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
|
| 66 |
if __name__ == "__main__":
|
| 67 |
logger.info("Model initialization complete.")
|
|
|
app/model_architectures.py
CHANGED
|
@@ -1,32 +1,67 @@
|
|
|
|
|
|
|
|
| 1 |
import torch
|
| 2 |
import torch.nn as nn
|
| 3 |
import torchvision.models as models
|
|
|
|
|
|
|
|
|
|
| 4 |
|
| 5 |
class ResNet50(nn.Module):
|
| 6 |
def __init__(self, num_classes=7, channels=3):
|
| 7 |
super(ResNet50, self).__init__()
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
def forward(self, x):
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def extract_features(self, x):
|
| 19 |
-
x = self.
|
| 20 |
-
x = self.
|
| 21 |
-
x = self.
|
| 22 |
-
x = self.
|
| 23 |
|
| 24 |
-
x = self.
|
| 25 |
-
x = self.
|
| 26 |
-
x = self.
|
| 27 |
-
x = self.
|
| 28 |
|
| 29 |
-
x = self.
|
| 30 |
x = torch.flatten(x, 1)
|
| 31 |
return x
|
| 32 |
|
|
@@ -34,13 +69,20 @@ class LSTMPyTorch(nn.Module):
|
|
| 34 |
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
| 35 |
super(LSTMPyTorch, self).__init__()
|
| 36 |
self.hidden_size = hidden_size
|
| 37 |
-
|
| 38 |
-
|
|
|
|
|
|
|
| 39 |
self.fc = nn.Linear(hidden_size, num_classes)
|
| 40 |
|
| 41 |
def forward(self, x):
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# model_architectures.py
|
| 2 |
+
|
| 3 |
import torch
|
| 4 |
import torch.nn as nn
|
| 5 |
import torchvision.models as models
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
logger = logging.getLogger(__name__)
|
| 9 |
|
| 10 |
class ResNet50(nn.Module):
|
| 11 |
def __init__(self, num_classes=7, channels=3):
|
| 12 |
super(ResNet50, self).__init__()
|
| 13 |
+
# Define layers directly without wrapping in 'resnet'
|
| 14 |
+
self.conv_layer_s2_same = nn.Conv2d(channels, 64, kernel_size=7, stride=2, padding=3, bias=False)
|
| 15 |
+
self.batch_norm1 = nn.BatchNorm2d(64)
|
| 16 |
+
self.relu = nn.ReLU(inplace=True)
|
| 17 |
+
self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)
|
| 18 |
+
|
| 19 |
+
# Load pre-trained ResNet50 model
|
| 20 |
+
resnet = models.resnet50(pretrained=True)
|
| 21 |
+
|
| 22 |
+
# Extract layers
|
| 23 |
+
self.layer1 = resnet.layer1
|
| 24 |
+
self.layer2 = resnet.layer2
|
| 25 |
+
self.layer3 = resnet.layer3
|
| 26 |
+
self.layer4 = resnet.layer4
|
| 27 |
+
self.avgpool = resnet.avgpool
|
| 28 |
+
|
| 29 |
+
# Fully connected layers
|
| 30 |
+
self.fc1 = nn.Linear(resnet.fc.in_features, num_classes)
|
| 31 |
+
# If your model has additional fully connected layers, define them here
|
| 32 |
+
# Example:
|
| 33 |
+
# self.fc2 = nn.Linear(num_classes, num_classes)
|
| 34 |
|
| 35 |
def forward(self, x):
|
| 36 |
+
x = self.conv_layer_s2_same(x)
|
| 37 |
+
x = self.batch_norm1(x)
|
| 38 |
+
x = self.relu(x)
|
| 39 |
+
x = self.maxpool(x)
|
| 40 |
+
|
| 41 |
+
x = self.layer1(x)
|
| 42 |
+
x = self.layer2(x)
|
| 43 |
+
x = self.layer3(x)
|
| 44 |
+
x = self.layer4(x)
|
| 45 |
+
|
| 46 |
+
x = self.avgpool(x)
|
| 47 |
+
x = torch.flatten(x, 1)
|
| 48 |
+
x = self.fc1(x)
|
| 49 |
+
# If additional fully connected layers are defined, pass x through them
|
| 50 |
+
# x = self.fc2(x)
|
| 51 |
+
return x
|
| 52 |
|
| 53 |
def extract_features(self, x):
|
| 54 |
+
x = self.conv_layer_s2_same(x)
|
| 55 |
+
x = self.batch_norm1(x)
|
| 56 |
+
x = self.relu(x)
|
| 57 |
+
x = self.maxpool(x)
|
| 58 |
|
| 59 |
+
x = self.layer1(x)
|
| 60 |
+
x = self.layer2(x)
|
| 61 |
+
x = self.layer3(x)
|
| 62 |
+
x = self.layer4(x)
|
| 63 |
|
| 64 |
+
x = self.avgpool(x)
|
| 65 |
x = torch.flatten(x, 1)
|
| 66 |
return x
|
| 67 |
|
|
|
|
| 69 |
def __init__(self, input_size, hidden_size, num_layers, num_classes):
|
| 70 |
super(LSTMPyTorch, self).__init__()
|
| 71 |
self.hidden_size = hidden_size
|
| 72 |
+
|
| 73 |
+
# Define separate LSTM layers
|
| 74 |
+
self.lstm1 = nn.LSTM(input_size, hidden_size, num_layers=1, batch_first=True)
|
| 75 |
+
self.lstm2 = nn.LSTM(hidden_size, hidden_size, num_layers=1, batch_first=True)
|
| 76 |
self.fc = nn.Linear(hidden_size, num_classes)
|
| 77 |
|
| 78 |
def forward(self, x):
|
| 79 |
+
h0_1 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
|
| 80 |
+
c0_1 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
|
| 81 |
+
out1, _ = self.lstm1(x, (h0_1, c0_1))
|
| 82 |
+
|
| 83 |
+
h0_2 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
|
| 84 |
+
c0_2 = torch.zeros(1, x.size(0), self.hidden_size).to(x.device)
|
| 85 |
+
out2, _ = self.lstm2(out1, (h0_2, c0_2))
|
| 86 |
+
|
| 87 |
+
out = self.fc(out2[:, -1, :])
|
| 88 |
+
return out
|
app/sleep_quality_processing.py
DELETED
|
@@ -1,94 +0,0 @@
|
|
| 1 |
-
import cv2
|
| 2 |
-
import numpy as np
|
| 3 |
-
import matplotlib.pyplot as plt
|
| 4 |
-
import mediapipe as mp
|
| 5 |
-
from app.face_utils import get_box
|
| 6 |
-
|
| 7 |
-
mp_face_mesh = mp.solutions.face_mesh
|
| 8 |
-
|
| 9 |
-
def preprocess_video_and_predict_sleep_quality(video):
|
| 10 |
-
cap = cv2.VideoCapture(video)
|
| 11 |
-
w = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 12 |
-
h = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 13 |
-
fps = np.round(cap.get(cv2.CAP_PROP_FPS))
|
| 14 |
-
|
| 15 |
-
path_save_video_original = 'result_original.mp4'
|
| 16 |
-
path_save_video_face = 'result_face.mp4'
|
| 17 |
-
path_save_video_sleep = 'result_sleep.mp4'
|
| 18 |
-
|
| 19 |
-
vid_writer_original = cv2.VideoWriter(path_save_video_original, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
|
| 20 |
-
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
| 21 |
-
vid_writer_sleep = cv2.VideoWriter(path_save_video_sleep, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
| 22 |
-
|
| 23 |
-
frames = []
|
| 24 |
-
sleep_quality_scores = []
|
| 25 |
-
eye_bags_images = []
|
| 26 |
-
|
| 27 |
-
with mp_face_mesh.FaceMesh(
|
| 28 |
-
max_num_faces=1,
|
| 29 |
-
refine_landmarks=False,
|
| 30 |
-
min_detection_confidence=0.5,
|
| 31 |
-
min_tracking_confidence=0.5) as face_mesh:
|
| 32 |
-
|
| 33 |
-
while cap.isOpened():
|
| 34 |
-
ret, frame = cap.read()
|
| 35 |
-
if not ret:
|
| 36 |
-
break
|
| 37 |
-
|
| 38 |
-
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 39 |
-
results = face_mesh.process(frame_rgb)
|
| 40 |
-
|
| 41 |
-
if results.multi_face_landmarks:
|
| 42 |
-
for fl in results.multi_face_landmarks:
|
| 43 |
-
startX, startY, endX, endY = get_box(fl, w, h)
|
| 44 |
-
cur_face = frame_rgb[startY:endY, startX:endX]
|
| 45 |
-
|
| 46 |
-
sleep_quality_score, eye_bags_image = analyze_sleep_quality(cur_face)
|
| 47 |
-
sleep_quality_scores.append(sleep_quality_score)
|
| 48 |
-
eye_bags_images.append(cv2.resize(eye_bags_image, (224, 224)))
|
| 49 |
-
|
| 50 |
-
sleep_quality_viz = create_sleep_quality_visualization(cur_face, sleep_quality_score)
|
| 51 |
-
|
| 52 |
-
cur_face = cv2.resize(cur_face, (224, 224))
|
| 53 |
-
|
| 54 |
-
vid_writer_face.write(cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR))
|
| 55 |
-
vid_writer_sleep.write(sleep_quality_viz)
|
| 56 |
-
|
| 57 |
-
vid_writer_original.write(frame)
|
| 58 |
-
frames.append(len(frames) + 1)
|
| 59 |
-
|
| 60 |
-
cap.release()
|
| 61 |
-
vid_writer_original.release()
|
| 62 |
-
vid_writer_face.release()
|
| 63 |
-
vid_writer_sleep.release()
|
| 64 |
-
|
| 65 |
-
sleep_stat = sleep_quality_statistics_plot(frames, sleep_quality_scores)
|
| 66 |
-
|
| 67 |
-
if eye_bags_images:
|
| 68 |
-
average_eye_bags_image = np.mean(np.array(eye_bags_images), axis=0).astype(np.uint8)
|
| 69 |
-
else:
|
| 70 |
-
average_eye_bags_image = np.zeros((224, 224, 3), dtype=np.uint8)
|
| 71 |
-
|
| 72 |
-
return (path_save_video_original, path_save_video_face, path_save_video_sleep,
|
| 73 |
-
average_eye_bags_image, sleep_stat)
|
| 74 |
-
|
| 75 |
-
def analyze_sleep_quality(face_image):
|
| 76 |
-
# Placeholder function - implement your sleep quality analysis here
|
| 77 |
-
sleep_quality_score = np.random.random()
|
| 78 |
-
eye_bags_image = cv2.resize(face_image, (224, 224))
|
| 79 |
-
return sleep_quality_score, eye_bags_image
|
| 80 |
-
|
| 81 |
-
def create_sleep_quality_visualization(face_image, sleep_quality_score):
|
| 82 |
-
viz = face_image.copy()
|
| 83 |
-
cv2.putText(viz, f"Sleep Quality: {sleep_quality_score:.2f}", (10, 30),
|
| 84 |
-
cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
| 85 |
-
return cv2.cvtColor(viz, cv2.COLOR_RGB2BGR)
|
| 86 |
-
|
| 87 |
-
def sleep_quality_statistics_plot(frames, sleep_quality_scores):
|
| 88 |
-
fig, ax = plt.subplots()
|
| 89 |
-
ax.plot(frames, sleep_quality_scores)
|
| 90 |
-
ax.set_xlabel('Frame')
|
| 91 |
-
ax.set_ylabel('Sleep Quality Score')
|
| 92 |
-
ax.set_title('Sleep Quality Over Time')
|
| 93 |
-
plt.tight_layout()
|
| 94 |
-
return fig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app/video_processing.py
CHANGED
|
@@ -8,19 +8,28 @@ from app.face_utils import get_box, display_info
|
|
| 8 |
from app.config import config_data
|
| 9 |
from app.plot import statistics_plot
|
| 10 |
from .au_processing import features_to_au_intensities, au_statistics_plot
|
|
|
|
| 11 |
|
| 12 |
mp_face_mesh = mp.solutions.face_mesh
|
| 13 |
|
| 14 |
-
def preprocess_video_and_predict(
|
| 15 |
-
cap = cv2.VideoCapture(
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
-
|
| 21 |
-
|
|
|
|
|
|
|
|
|
|
| 22 |
|
|
|
|
|
|
|
| 23 |
path_save_video_hm = 'result_hm.mp4'
|
|
|
|
|
|
|
|
|
|
| 24 |
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
| 25 |
|
| 26 |
lstm_features = []
|
|
@@ -30,54 +39,58 @@ def preprocess_video_and_predict(video):
|
|
| 30 |
frames = []
|
| 31 |
au_intensities_list = []
|
| 32 |
last_output = None
|
| 33 |
-
last_heatmap = None
|
| 34 |
last_au_intensities = None
|
| 35 |
cur_face = None
|
| 36 |
|
| 37 |
with mp_face_mesh.FaceMesh(
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
|
| 43 |
while cap.isOpened():
|
| 44 |
-
|
| 45 |
-
if
|
|
|
|
| 46 |
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_BGR2RGB)
|
| 50 |
-
results = face_mesh.process(frame_copy)
|
| 51 |
-
frame_copy.flags.writeable = True
|
| 52 |
|
| 53 |
if results.multi_face_landmarks:
|
| 54 |
-
for
|
| 55 |
-
startX, startY, endX, endY
|
| 56 |
-
cur_face =
|
|
|
|
|
|
|
|
|
|
|
|
|
| 57 |
|
| 58 |
-
if count_face%config_data.FRAME_DOWNSAMPLING == 0:
|
| 59 |
-
cur_face_copy = pth_processing(Image.fromarray(cur_face))
|
| 60 |
with torch.no_grad():
|
| 61 |
-
features = torch.nn.functional.relu(
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
last_heatmap = heatmap
|
| 70 |
last_au_intensities = au_intensities
|
| 71 |
-
|
| 72 |
-
if
|
| 73 |
-
lstm_features = [features]*10
|
| 74 |
else:
|
| 75 |
lstm_features = lstm_features[1:] + [features]
|
| 76 |
|
| 77 |
-
|
| 78 |
-
lstm_f = torch.unsqueeze(lstm_f, 0)
|
| 79 |
with torch.no_grad():
|
| 80 |
-
output = pth_model_dynamic(
|
| 81 |
last_output = output
|
| 82 |
|
| 83 |
if count_face == 0:
|
|
@@ -88,38 +101,33 @@ def preprocess_video_and_predict(video):
|
|
| 88 |
output = last_output
|
| 89 |
heatmap = last_heatmap
|
| 90 |
au_intensities = last_au_intensities
|
|
|
|
|
|
|
|
|
|
| 91 |
|
| 92 |
-
elif last_output is None:
|
| 93 |
-
output = np.empty((1, 7))
|
| 94 |
-
output[:] = np.nan
|
| 95 |
-
au_intensities = np.empty(24)
|
| 96 |
-
au_intensities[:] = np.nan
|
| 97 |
-
|
| 98 |
probs.append(output[0])
|
| 99 |
frames.append(count_frame)
|
| 100 |
au_intensities_list.append(au_intensities)
|
| 101 |
else:
|
| 102 |
if last_output is not None:
|
| 103 |
lstm_features = []
|
| 104 |
-
|
| 105 |
-
empty[:] = np.nan
|
| 106 |
-
probs.append(empty)
|
| 107 |
frames.append(count_frame)
|
| 108 |
au_intensities_list.append(np.full(24, np.nan))
|
| 109 |
|
| 110 |
if cur_face is not None:
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
vid_writer_hm.write(heatmap_f)
|
| 118 |
|
| 119 |
count_frame += 1
|
| 120 |
if count_face != 0:
|
| 121 |
count_face += 1
|
| 122 |
|
|
|
|
| 123 |
vid_writer_face.release()
|
| 124 |
vid_writer_hm.release()
|
| 125 |
|
|
@@ -128,5 +136,5 @@ def preprocess_video_and_predict(video):
|
|
| 128 |
|
| 129 |
if not stat or not au_stat:
|
| 130 |
return None, None, None, None, None
|
| 131 |
-
|
| 132 |
-
return
|
|
|
|
| 8 |
from app.config import config_data
|
| 9 |
from app.plot import statistics_plot
|
| 10 |
from .au_processing import features_to_au_intensities, au_statistics_plot
|
| 11 |
+
from pytorch_grad_cam.utils.image import show_cam_on_image
|
| 12 |
|
| 13 |
mp_face_mesh = mp.solutions.face_mesh
|
| 14 |
|
| 15 |
+
def preprocess_video_and_predict(video_path):
|
| 16 |
+
cap = cv2.VideoCapture(video_path)
|
| 17 |
+
if not cap.isOpened():
|
| 18 |
+
print(f"Error opening video file: {video_path}")
|
| 19 |
+
return None, None, None, None, None
|
| 20 |
|
| 21 |
+
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
|
| 22 |
+
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
|
| 23 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 24 |
+
if fps <= 0 or fps != fps: # Handle NaN fps
|
| 25 |
+
fps = 30 # Default FPS
|
| 26 |
|
| 27 |
+
# Paths to save processed videos
|
| 28 |
+
path_save_video_face = 'result_face.mp4'
|
| 29 |
path_save_video_hm = 'result_hm.mp4'
|
| 30 |
+
|
| 31 |
+
# Video writers
|
| 32 |
+
vid_writer_face = cv2.VideoWriter(path_save_video_face, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
| 33 |
vid_writer_hm = cv2.VideoWriter(path_save_video_hm, cv2.VideoWriter_fourcc(*'mp4v'), fps, (224, 224))
|
| 34 |
|
| 35 |
lstm_features = []
|
|
|
|
| 39 |
frames = []
|
| 40 |
au_intensities_list = []
|
| 41 |
last_output = None
|
| 42 |
+
last_heatmap = None
|
| 43 |
last_au_intensities = None
|
| 44 |
cur_face = None
|
| 45 |
|
| 46 |
with mp_face_mesh.FaceMesh(
|
| 47 |
+
max_num_faces=1,
|
| 48 |
+
refine_landmarks=False,
|
| 49 |
+
min_detection_confidence=0.5,
|
| 50 |
+
min_tracking_confidence=0.5) as face_mesh:
|
| 51 |
|
| 52 |
while cap.isOpened():
|
| 53 |
+
ret, frame = cap.read()
|
| 54 |
+
if not ret:
|
| 55 |
+
break
|
| 56 |
|
| 57 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 58 |
+
results = face_mesh.process(frame_rgb)
|
|
|
|
|
|
|
|
|
|
| 59 |
|
| 60 |
if results.multi_face_landmarks:
|
| 61 |
+
for face_landmarks in results.multi_face_landmarks:
|
| 62 |
+
startX, startY, endX, endY = get_box(face_landmarks, width, height)
|
| 63 |
+
cur_face = frame_rgb[startY:endY, startX:endX]
|
| 64 |
+
|
| 65 |
+
if count_face % config_data.FRAME_DOWNSAMPLING == 0:
|
| 66 |
+
cur_face_pil = Image.fromarray(cur_face)
|
| 67 |
+
cur_face_processed = pth_processing(cur_face_pil)
|
| 68 |
|
|
|
|
|
|
|
| 69 |
with torch.no_grad():
|
| 70 |
+
features = torch.nn.functional.relu(
|
| 71 |
+
pth_model_static.extract_features(cur_face_processed)
|
| 72 |
+
).cpu().numpy()
|
| 73 |
+
au_intensities = features_to_au_intensities(
|
| 74 |
+
pth_model_static(cur_face_processed)
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# Generate heatmap
|
| 78 |
+
grayscale_cam = cam(input_tensor=cur_face_processed)[0, :]
|
| 79 |
+
cur_face_resized = cv2.resize(cur_face, (224, 224), interpolation=cv2.INTER_AREA)
|
| 80 |
+
cur_face_normalized = np.float32(cur_face_resized) / 255
|
| 81 |
+
heatmap = show_cam_on_image(cur_face_normalized, grayscale_cam, use_rgb=False)
|
| 82 |
+
|
| 83 |
last_heatmap = heatmap
|
| 84 |
last_au_intensities = au_intensities
|
| 85 |
+
|
| 86 |
+
if not lstm_features:
|
| 87 |
+
lstm_features = [features] * 10
|
| 88 |
else:
|
| 89 |
lstm_features = lstm_features[1:] + [features]
|
| 90 |
|
| 91 |
+
lstm_input = torch.from_numpy(np.vstack(lstm_features)).unsqueeze(0)
|
|
|
|
| 92 |
with torch.no_grad():
|
| 93 |
+
output = pth_model_dynamic(lstm_input).cpu().numpy()
|
| 94 |
last_output = output
|
| 95 |
|
| 96 |
if count_face == 0:
|
|
|
|
| 101 |
output = last_output
|
| 102 |
heatmap = last_heatmap
|
| 103 |
au_intensities = last_au_intensities
|
| 104 |
+
else:
|
| 105 |
+
output = np.full((1, 7), np.nan)
|
| 106 |
+
au_intensities = np.full(24, np.nan)
|
| 107 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
probs.append(output[0])
|
| 109 |
frames.append(count_frame)
|
| 110 |
au_intensities_list.append(au_intensities)
|
| 111 |
else:
|
| 112 |
if last_output is not None:
|
| 113 |
lstm_features = []
|
| 114 |
+
probs.append(np.full(7, np.nan))
|
|
|
|
|
|
|
| 115 |
frames.append(count_frame)
|
| 116 |
au_intensities_list.append(np.full(24, np.nan))
|
| 117 |
|
| 118 |
if cur_face is not None:
|
| 119 |
+
heatmap_frame = display_info(heatmap, f'Frame: {count_frame}', box_scale=0.3)
|
| 120 |
+
cur_face_bgr = cv2.cvtColor(cur_face, cv2.COLOR_RGB2BGR)
|
| 121 |
+
cur_face_resized = cv2.resize(cur_face_bgr, (224, 224), interpolation=cv2.INTER_AREA)
|
| 122 |
+
cur_face_annotated = display_info(cur_face_resized, f'Frame: {count_frame}', box_scale=0.3)
|
| 123 |
+
vid_writer_face.write(cur_face_annotated)
|
| 124 |
+
vid_writer_hm.write(heatmap_frame)
|
|
|
|
| 125 |
|
| 126 |
count_frame += 1
|
| 127 |
if count_face != 0:
|
| 128 |
count_face += 1
|
| 129 |
|
| 130 |
+
cap.release()
|
| 131 |
vid_writer_face.release()
|
| 132 |
vid_writer_hm.release()
|
| 133 |
|
|
|
|
| 136 |
|
| 137 |
if not stat or not au_stat:
|
| 138 |
return None, None, None, None, None
|
| 139 |
+
|
| 140 |
+
return video_path, path_save_video_face, path_save_video_hm, stat, au_stat
|
app_gpuzero.py
DELETED
|
@@ -1,64 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from tabs.heart_rate_variability import create_hrv_tab
|
| 3 |
-
from tabs.blink_detection import create_blink_tab
|
| 4 |
-
from tabs.gaze_estimation import create_gaze_estimation_tab
|
| 5 |
-
from tabs.speech_stress_analysis import create_voice_stress_tab
|
| 6 |
-
from tabs.head_posture_detection import create_head_posture_tab
|
| 7 |
-
from tabs.face_expressions import create_face_expressions_tab
|
| 8 |
-
from tabs.speech_emotion_recognition import create_emotion_recognition_tab
|
| 9 |
-
from tabs.sleep_quality import create_sleep_quality_tab
|
| 10 |
-
from tabs.sentiment_analysis import create_sentiment_tab
|
| 11 |
-
from tabs.emotion_analysis import create_emotion_tab
|
| 12 |
-
from tabs.body_movement_analysis import create_body_movement_tab
|
| 13 |
-
from tabs.posture_analysis import create_posture_analysis_tab
|
| 14 |
-
from tabs.skin_analysis import create_skin_conductance_tab
|
| 15 |
-
from tabs.FACS_analysis import create_facs_analysis_tab
|
| 16 |
-
from tabs.roberta_chatbot import create_roberta_chatbot_tab
|
| 17 |
-
|
| 18 |
-
# Import the UI components
|
| 19 |
-
from ui_components import CUSTOM_CSS, HEADER_HTML, DISCLAIMER_HTML
|
| 20 |
-
|
| 21 |
-
TAB_STRUCTURE = [
|
| 22 |
-
("Visual Analysis", [
|
| 23 |
-
("Emotional Face Expressions", create_face_expressions_tab),
|
| 24 |
-
("FACS for Stress, Anxiety, Depression", create_facs_analysis_tab),
|
| 25 |
-
("Gaze Estimation", create_gaze_estimation_tab),
|
| 26 |
-
("Head Posture", create_head_posture_tab),
|
| 27 |
-
("Blink Rate", create_blink_tab),
|
| 28 |
-
("Sleep Quality", create_sleep_quality_tab),
|
| 29 |
-
("Heart Rate Variability", create_hrv_tab),
|
| 30 |
-
("Body Movement", create_body_movement_tab),
|
| 31 |
-
("Posture", create_posture_analysis_tab),
|
| 32 |
-
("Skin", create_skin_conductance_tab)
|
| 33 |
-
]),
|
| 34 |
-
("Speech Analysis", [
|
| 35 |
-
("Speech Stress", create_voice_stress_tab),
|
| 36 |
-
("Speech Emotion", create_emotion_recognition_tab)
|
| 37 |
-
]),
|
| 38 |
-
("Text Analysis", [
|
| 39 |
-
("Sentiment", create_sentiment_tab),
|
| 40 |
-
("Emotion", create_emotion_tab),
|
| 41 |
-
("Roberta Mental Health Chatbot", create_roberta_chatbot_tab)
|
| 42 |
-
]),
|
| 43 |
-
("Brain Analysis (coming soon)", [
|
| 44 |
-
])
|
| 45 |
-
]
|
| 46 |
-
|
| 47 |
-
def create_demo():
|
| 48 |
-
with gr.Blocks(css=CUSTOM_CSS) as demo:
|
| 49 |
-
gr.Markdown(HEADER_HTML)
|
| 50 |
-
with gr.Tabs(elem_classes=["main-tab"]):
|
| 51 |
-
for main_tab, sub_tabs in TAB_STRUCTURE:
|
| 52 |
-
with gr.Tab(main_tab):
|
| 53 |
-
with gr.Tabs():
|
| 54 |
-
for sub_tab, create_fn in sub_tabs:
|
| 55 |
-
with gr.Tab(sub_tab):
|
| 56 |
-
create_fn()
|
| 57 |
-
gr.HTML(DISCLAIMER_HTML)
|
| 58 |
-
return demo
|
| 59 |
-
|
| 60 |
-
# Create the demo instance
|
| 61 |
-
demo = create_demo()
|
| 62 |
-
|
| 63 |
-
if __name__ == "__main__":
|
| 64 |
-
demo.queue(api_open=True).launch(share=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
assets/.DS_Store
CHANGED
|
Binary files a/assets/.DS_Store and b/assets/.DS_Store differ
|
|
|
assets/models/FER_dynamic_LSTM.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:0cd1561a72f9de26c315bb857f03e8946635db047e0dbea52bb0276610f19751
|
| 3 |
+
size 11569208
|
assets/models/FER_static_ResNet50_AffectNet.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:8274190b5be4355bd2f07b59f593fcdb294f9d7c563bfa9ac9e5ea06c10692d2
|
| 3 |
+
size 98562934
|
llm/mentalBERT.py
DELETED
|
@@ -1,73 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
from transformers import RobertaTokenizer, RobertaForSequenceClassification
|
| 3 |
-
import gradio as gr
|
| 4 |
-
|
| 5 |
-
# Load the tokenizer and models
|
| 6 |
-
tokenizer = RobertaTokenizer.from_pretrained("mental/mental-roberta-base")
|
| 7 |
-
sentiment_model = RobertaForSequenceClassification.from_pretrained("mental/mental-roberta-base")
|
| 8 |
-
emotion_model = RobertaForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
| 9 |
-
|
| 10 |
-
# Define the labels
|
| 11 |
-
sentiment_labels = ["negative", "positive"]
|
| 12 |
-
emotion_labels = ["anger", "disgust", "fear", "joy", "neutral", "sadness", "surprise"]
|
| 13 |
-
|
| 14 |
-
def analyze_text(text):
|
| 15 |
-
try:
|
| 16 |
-
# Tokenize the input text
|
| 17 |
-
inputs = tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 18 |
-
|
| 19 |
-
# Get sentiment model outputs
|
| 20 |
-
sentiment_outputs = sentiment_model(**inputs)
|
| 21 |
-
sentiment_logits = sentiment_outputs.logits
|
| 22 |
-
sentiment_probs = torch.nn.functional.softmax(sentiment_logits, dim=-1)
|
| 23 |
-
|
| 24 |
-
# Debugging: Print logits and probs shapes
|
| 25 |
-
print("Sentiment logits shape:", sentiment_logits.shape)
|
| 26 |
-
print("Sentiment logits:", sentiment_logits)
|
| 27 |
-
print("Sentiment probs shape:", sentiment_probs.shape)
|
| 28 |
-
print("Sentiment probs:", sentiment_probs)
|
| 29 |
-
|
| 30 |
-
# Get the highest probability and corresponding label for sentiment
|
| 31 |
-
max_sentiment_prob, max_sentiment_index = torch.max(sentiment_probs, dim=1)
|
| 32 |
-
sentiment = sentiment_labels[max_sentiment_index.item()]
|
| 33 |
-
|
| 34 |
-
# Get emotion model outputs
|
| 35 |
-
emotion_outputs = emotion_model(**inputs)
|
| 36 |
-
emotion_logits = emotion_outputs.logits
|
| 37 |
-
emotion_probs = torch.nn.functional.softmax(emotion_logits, dim=-1)
|
| 38 |
-
|
| 39 |
-
# Debugging: Print logits and probs shapes
|
| 40 |
-
print("Emotion logits shape:", emotion_logits.shape)
|
| 41 |
-
print("Emotion logits:", emotion_logits)
|
| 42 |
-
print("Emotion probs shape:", emotion_probs.shape)
|
| 43 |
-
print("Emotion probs:", emotion_probs)
|
| 44 |
-
|
| 45 |
-
# Get the highest probability and corresponding label for emotion
|
| 46 |
-
max_emotion_prob, max_emotion_index = torch.max(emotion_probs, dim=1)
|
| 47 |
-
emotion = emotion_labels[max_emotion_index.item()]
|
| 48 |
-
|
| 49 |
-
return sentiment, f"{max_sentiment_prob.item():.4f}", emotion, f"{max_emotion_prob.item():.4f}"
|
| 50 |
-
except Exception as e:
|
| 51 |
-
print("Error:", str(e))
|
| 52 |
-
return "Error", "N/A", "Error", "N/A"
|
| 53 |
-
|
| 54 |
-
# Define the Gradio interface
|
| 55 |
-
interface = gr.Interface(
|
| 56 |
-
fn=analyze_text,
|
| 57 |
-
inputs=gr.Textbox(
|
| 58 |
-
lines=5,
|
| 59 |
-
placeholder="Enter text here...",
|
| 60 |
-
value="I don’t know a lot but what I do know is, we don’t start off very big and we all try to make each other smaller."
|
| 61 |
-
),
|
| 62 |
-
outputs=[
|
| 63 |
-
gr.Textbox(label="Detected Sentiment"),
|
| 64 |
-
gr.Textbox(label="Sentiment Confidence Score"),
|
| 65 |
-
gr.Textbox(label="Detected Emotion"),
|
| 66 |
-
gr.Textbox(label="Emotion Confidence Score")
|
| 67 |
-
],
|
| 68 |
-
title="Sentiment and Emotion Analysis: Detecting Positive/Negative Sentiment and Specific Emotions",
|
| 69 |
-
description="Enter a piece of text to detect overall sentiment (positive or negative) and specific emotions (anger, disgust, fear, joy, neutral, sadness, surprise)."
|
| 70 |
-
)
|
| 71 |
-
|
| 72 |
-
# Launch the interface
|
| 73 |
-
interface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
notebooks/pytorch-roberta-onnx.ipynb
DELETED
|
@@ -1,280 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "markdown",
|
| 5 |
-
"metadata": {},
|
| 6 |
-
"source": [
|
| 7 |
-
"## Pytorch RoBERTa to ONNX"
|
| 8 |
-
]
|
| 9 |
-
},
|
| 10 |
-
{
|
| 11 |
-
"cell_type": "markdown",
|
| 12 |
-
"metadata": {},
|
| 13 |
-
"source": [
|
| 14 |
-
"This notebook documents how to export the PyTorch NLP model into ONNX format and then use it to make predictions using the ONNX runtime.\n",
|
| 15 |
-
"\n",
|
| 16 |
-
"The model uses the `simpletransformers` library which is a Python wrappers around the `transformers` library which contains PyTorch NLP transformer architectures and weights."
|
| 17 |
-
]
|
| 18 |
-
},
|
| 19 |
-
{
|
| 20 |
-
"cell_type": "code",
|
| 21 |
-
"execution_count": 1,
|
| 22 |
-
"metadata": {},
|
| 23 |
-
"outputs": [],
|
| 24 |
-
"source": [
|
| 25 |
-
"import torch\n",
|
| 26 |
-
"import numpy as np\n",
|
| 27 |
-
"from simpletransformers.model import TransformerModel\n",
|
| 28 |
-
"from transformers import RobertaForSequenceClassification, RobertaTokenizer\n",
|
| 29 |
-
"import onnx\n",
|
| 30 |
-
"import onnxruntime"
|
| 31 |
-
]
|
| 32 |
-
},
|
| 33 |
-
{
|
| 34 |
-
"cell_type": "markdown",
|
| 35 |
-
"metadata": {},
|
| 36 |
-
"source": [
|
| 37 |
-
"## Step 1: Load pretrained PyTorch model"
|
| 38 |
-
]
|
| 39 |
-
},
|
| 40 |
-
{
|
| 41 |
-
"cell_type": "markdown",
|
| 42 |
-
"metadata": {},
|
| 43 |
-
"source": [
|
| 44 |
-
"Download the model weights from https://storage.googleapis.com/seldon-models/pytorch/moviesentiment_roberta/pytorch_model.bin"
|
| 45 |
-
]
|
| 46 |
-
},
|
| 47 |
-
{
|
| 48 |
-
"cell_type": "code",
|
| 49 |
-
"execution_count": 2,
|
| 50 |
-
"metadata": {},
|
| 51 |
-
"outputs": [],
|
| 52 |
-
"source": [
|
| 53 |
-
"model = TransformerModel('roberta', 'roberta-base', args=({'fp16': False}))"
|
| 54 |
-
]
|
| 55 |
-
},
|
| 56 |
-
{
|
| 57 |
-
"cell_type": "code",
|
| 58 |
-
"execution_count": 3,
|
| 59 |
-
"metadata": {},
|
| 60 |
-
"outputs": [
|
| 61 |
-
{
|
| 62 |
-
"data": {
|
| 63 |
-
"text/plain": [
|
| 64 |
-
"<All keys matched successfully>"
|
| 65 |
-
]
|
| 66 |
-
},
|
| 67 |
-
"execution_count": 3,
|
| 68 |
-
"metadata": {},
|
| 69 |
-
"output_type": "execute_result"
|
| 70 |
-
}
|
| 71 |
-
],
|
| 72 |
-
"source": [
|
| 73 |
-
"model.model.load_state_dict(torch.load('pytorch_model.bin'))"
|
| 74 |
-
]
|
| 75 |
-
},
|
| 76 |
-
{
|
| 77 |
-
"cell_type": "markdown",
|
| 78 |
-
"metadata": {},
|
| 79 |
-
"source": [
|
| 80 |
-
"## Step 2: Export as ONNX"
|
| 81 |
-
]
|
| 82 |
-
},
|
| 83 |
-
{
|
| 84 |
-
"cell_type": "markdown",
|
| 85 |
-
"metadata": {},
|
| 86 |
-
"source": [
|
| 87 |
-
"PyTorch supports exporting to ONNX, you just need to specify a valid input tensor for the model."
|
| 88 |
-
]
|
| 89 |
-
},
|
| 90 |
-
{
|
| 91 |
-
"cell_type": "code",
|
| 92 |
-
"execution_count": 4,
|
| 93 |
-
"metadata": {},
|
| 94 |
-
"outputs": [],
|
| 95 |
-
"source": [
|
| 96 |
-
"tokenizer = RobertaTokenizer.from_pretrained('roberta-base')\n",
|
| 97 |
-
"input_ids = torch.tensor(tokenizer.encode(\"This film is so bad\", add_special_tokens=True)).unsqueeze(0) # Batch size 1"
|
| 98 |
-
]
|
| 99 |
-
},
|
| 100 |
-
{
|
| 101 |
-
"cell_type": "code",
|
| 102 |
-
"execution_count": 5,
|
| 103 |
-
"metadata": {},
|
| 104 |
-
"outputs": [
|
| 105 |
-
{
|
| 106 |
-
"data": {
|
| 107 |
-
"text/plain": [
|
| 108 |
-
"tensor([[ 0, 713, 822, 16, 98, 1099, 2]])"
|
| 109 |
-
]
|
| 110 |
-
},
|
| 111 |
-
"execution_count": 5,
|
| 112 |
-
"metadata": {},
|
| 113 |
-
"output_type": "execute_result"
|
| 114 |
-
}
|
| 115 |
-
],
|
| 116 |
-
"source": [
|
| 117 |
-
"input_ids"
|
| 118 |
-
]
|
| 119 |
-
},
|
| 120 |
-
{
|
| 121 |
-
"cell_type": "markdown",
|
| 122 |
-
"metadata": {},
|
| 123 |
-
"source": [
|
| 124 |
-
"Export as ONNX, we specify dynamic axes for batch dimension and sequence length as sentences come in various lengths."
|
| 125 |
-
]
|
| 126 |
-
},
|
| 127 |
-
{
|
| 128 |
-
"cell_type": "code",
|
| 129 |
-
"execution_count": 6,
|
| 130 |
-
"metadata": {},
|
| 131 |
-
"outputs": [
|
| 132 |
-
{
|
| 133 |
-
"name": "stderr",
|
| 134 |
-
"output_type": "stream",
|
| 135 |
-
"text": [
|
| 136 |
-
"/home/janis/.conda/envs/py37/lib/python3.7/site-packages/transformers/modeling_roberta.py:172: TracerWarning: Converting a tensor to a Python number might cause the trace to be incorrect. We can't record the data flow of Python values, so this value will be treated as a constant in the future. This means that the trace might not generalize to other inputs!\n",
|
| 137 |
-
" if input_ids[:, 0].sum().item() != 0:\n"
|
| 138 |
-
]
|
| 139 |
-
}
|
| 140 |
-
],
|
| 141 |
-
"source": [
|
| 142 |
-
"torch.onnx.export(model.model,\n",
|
| 143 |
-
" (input_ids),\n",
|
| 144 |
-
" \"roberta.onnx\",\n",
|
| 145 |
-
" input_names=['input'],\n",
|
| 146 |
-
" output_names=['output'],\n",
|
| 147 |
-
" dynamic_axes={'input' :{0 : 'batch_size',\n",
|
| 148 |
-
" 1: 'sentence_length'},\n",
|
| 149 |
-
" 'output': {0: 'batch_size'}})"
|
| 150 |
-
]
|
| 151 |
-
},
|
| 152 |
-
{
|
| 153 |
-
"cell_type": "markdown",
|
| 154 |
-
"metadata": {},
|
| 155 |
-
"source": [
|
| 156 |
-
"## Step 3: Test predictions are the same using ONNX runtime"
|
| 157 |
-
]
|
| 158 |
-
},
|
| 159 |
-
{
|
| 160 |
-
"cell_type": "code",
|
| 161 |
-
"execution_count": 7,
|
| 162 |
-
"metadata": {},
|
| 163 |
-
"outputs": [],
|
| 164 |
-
"source": [
|
| 165 |
-
"onnx_model = onnx.load(\"roberta.onnx\")"
|
| 166 |
-
]
|
| 167 |
-
},
|
| 168 |
-
{
|
| 169 |
-
"cell_type": "code",
|
| 170 |
-
"execution_count": 8,
|
| 171 |
-
"metadata": {},
|
| 172 |
-
"outputs": [],
|
| 173 |
-
"source": [
|
| 174 |
-
"# checks the exported model, may crash ipython kernel if run together with the PyTorch model in memory\n",
|
| 175 |
-
"# onnx.checker.check_model(onnx_model)"
|
| 176 |
-
]
|
| 177 |
-
},
|
| 178 |
-
{
|
| 179 |
-
"cell_type": "code",
|
| 180 |
-
"execution_count": 9,
|
| 181 |
-
"metadata": {},
|
| 182 |
-
"outputs": [],
|
| 183 |
-
"source": [
|
| 184 |
-
"import onnxruntime\n",
|
| 185 |
-
"\n",
|
| 186 |
-
"ort_session = onnxruntime.InferenceSession(\"roberta.onnx\")"
|
| 187 |
-
]
|
| 188 |
-
},
|
| 189 |
-
{
|
| 190 |
-
"cell_type": "code",
|
| 191 |
-
"execution_count": 10,
|
| 192 |
-
"metadata": {},
|
| 193 |
-
"outputs": [],
|
| 194 |
-
"source": [
|
| 195 |
-
"def to_numpy(tensor):\n",
|
| 196 |
-
" return tensor.detach().cpu().numpy() if tensor.requires_grad else tensor.cpu().numpy()"
|
| 197 |
-
]
|
| 198 |
-
},
|
| 199 |
-
{
|
| 200 |
-
"cell_type": "code",
|
| 201 |
-
"execution_count": 11,
|
| 202 |
-
"metadata": {},
|
| 203 |
-
"outputs": [],
|
| 204 |
-
"source": [
|
| 205 |
-
"input_ids = torch.tensor(tokenizer.encode(\"This film is so bad\", add_special_tokens=True)).unsqueeze(0) # Batch size 1"
|
| 206 |
-
]
|
| 207 |
-
},
|
| 208 |
-
{
|
| 209 |
-
"cell_type": "code",
|
| 210 |
-
"execution_count": 12,
|
| 211 |
-
"metadata": {},
|
| 212 |
-
"outputs": [],
|
| 213 |
-
"source": [
|
| 214 |
-
"# compute ONNX Runtime output prediction\n",
|
| 215 |
-
"ort_inputs = {ort_session.get_inputs()[0].name: to_numpy(input_ids)}\n",
|
| 216 |
-
"ort_out = ort_session.run(None, ort_inputs)"
|
| 217 |
-
]
|
| 218 |
-
},
|
| 219 |
-
{
|
| 220 |
-
"cell_type": "code",
|
| 221 |
-
"execution_count": 13,
|
| 222 |
-
"metadata": {},
|
| 223 |
-
"outputs": [],
|
| 224 |
-
"source": [
|
| 225 |
-
"out = model.model(input_ids)"
|
| 226 |
-
]
|
| 227 |
-
},
|
| 228 |
-
{
|
| 229 |
-
"cell_type": "code",
|
| 230 |
-
"execution_count": 14,
|
| 231 |
-
"metadata": {},
|
| 232 |
-
"outputs": [
|
| 233 |
-
{
|
| 234 |
-
"data": {
|
| 235 |
-
"text/plain": [
|
| 236 |
-
"((tensor([[ 2.3067, -2.6440]], grad_fn=<AddmmBackward>),),\n",
|
| 237 |
-
" [array([[ 2.3066945, -2.6439788]], dtype=float32)])"
|
| 238 |
-
]
|
| 239 |
-
},
|
| 240 |
-
"execution_count": 14,
|
| 241 |
-
"metadata": {},
|
| 242 |
-
"output_type": "execute_result"
|
| 243 |
-
}
|
| 244 |
-
],
|
| 245 |
-
"source": [
|
| 246 |
-
"out, ort_out"
|
| 247 |
-
]
|
| 248 |
-
},
|
| 249 |
-
{
|
| 250 |
-
"cell_type": "code",
|
| 251 |
-
"execution_count": 15,
|
| 252 |
-
"metadata": {},
|
| 253 |
-
"outputs": [],
|
| 254 |
-
"source": [
|
| 255 |
-
"np.testing.assert_allclose(to_numpy(out[0]), ort_out[0], rtol=1e-03, atol=1e-05)"
|
| 256 |
-
]
|
| 257 |
-
}
|
| 258 |
-
],
|
| 259 |
-
"metadata": {
|
| 260 |
-
"kernelspec": {
|
| 261 |
-
"display_name": "Python 3",
|
| 262 |
-
"language": "python",
|
| 263 |
-
"name": "python3"
|
| 264 |
-
},
|
| 265 |
-
"language_info": {
|
| 266 |
-
"codemirror_mode": {
|
| 267 |
-
"name": "ipython",
|
| 268 |
-
"version": 3
|
| 269 |
-
},
|
| 270 |
-
"file_extension": ".py",
|
| 271 |
-
"mimetype": "text/x-python",
|
| 272 |
-
"name": "python",
|
| 273 |
-
"nbconvert_exporter": "python",
|
| 274 |
-
"pygments_lexer": "ipython3",
|
| 275 |
-
"version": "3.7.3"
|
| 276 |
-
}
|
| 277 |
-
},
|
| 278 |
-
"nbformat": 4,
|
| 279 |
-
"nbformat_minor": 2
|
| 280 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
onxxchatbot.py
DELETED
|
@@ -1,40 +0,0 @@
|
|
| 1 |
-
import gradio as gr
|
| 2 |
-
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
|
| 3 |
-
|
| 4 |
-
# Load pre-trained model and tokenizer
|
| 5 |
-
model_name = "roberta-base"
|
| 6 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 7 |
-
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
| 8 |
-
|
| 9 |
-
# Create a text classification pipeline
|
| 10 |
-
classifier = pipeline("text-classification", model=model, tokenizer=tokenizer)
|
| 11 |
-
|
| 12 |
-
# Define response generation function
|
| 13 |
-
def generate_response(input_text):
|
| 14 |
-
# Classify the input text
|
| 15 |
-
result = classifier(input_text)[0]
|
| 16 |
-
label = result['label']
|
| 17 |
-
score = result['score']
|
| 18 |
-
|
| 19 |
-
# Map the classification result to a response
|
| 20 |
-
responses = {
|
| 21 |
-
"LABEL_0": "I understand you might be going through a difficult time. Remember, it's okay to seek help when you need it.",
|
| 22 |
-
"LABEL_1": "Your feelings are valid. Have you considered talking to a mental health professional about this?",
|
| 23 |
-
"LABEL_2": "Taking care of your mental health is crucial. Small steps like regular exercise and good sleep can make a big difference.",
|
| 24 |
-
"LABEL_3": "It sounds like you're dealing with a lot. Remember, you're not alone in this journey.",
|
| 25 |
-
"LABEL_4": "I hear you. Coping with mental health challenges can be tough. Have you tried any relaxation techniques like deep breathing or meditation?"
|
| 26 |
-
}
|
| 27 |
-
|
| 28 |
-
return responses.get(label, "I'm here to listen and support you. Could you tell me more about how you're feeling?")
|
| 29 |
-
|
| 30 |
-
# Define chatbot function for Gradio
|
| 31 |
-
def chatbot(message, history):
|
| 32 |
-
response = generate_response(message)
|
| 33 |
-
return response
|
| 34 |
-
|
| 35 |
-
# Create Gradio interface
|
| 36 |
-
iface = gr.ChatInterface(
|
| 37 |
-
fn=chatbot,
|
| 38 |
-
title="Mental Health Support Chatbot (RoBERTa)",
|
| 39 |
-
description="This chatbot uses a pre-trained RoBERTa model for mental health conversations. Remember, this is not a substitute for professional help. If you're in crisis, please seek immediate professional assistance."
|
| 40 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/FACS_analysis.py
CHANGED
|
@@ -4,18 +4,19 @@ import numpy as np
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
from app.app_utils import preprocess_frame_and_predict_aus
|
| 6 |
|
| 7 |
-
# Define the AUs associated with stress, anxiety, and
|
| 8 |
STRESS_AUS = [4, 7, 17, 23, 24]
|
| 9 |
ANXIETY_AUS = [1, 2, 4, 5, 20]
|
| 10 |
-
|
| 11 |
|
| 12 |
AU_DESCRIPTIONS = {
|
| 13 |
1: "Inner Brow Raiser",
|
| 14 |
2: "Outer Brow Raiser",
|
| 15 |
4: "Brow Lowerer",
|
| 16 |
5: "Upper Lid Raiser",
|
|
|
|
| 17 |
7: "Lid Tightener",
|
| 18 |
-
|
| 19 |
17: "Chin Raiser",
|
| 20 |
20: "Lip Stretcher",
|
| 21 |
23: "Lip Tightener",
|
|
@@ -52,13 +53,13 @@ def process_video_for_facs(video_path):
|
|
| 52 |
# Calculate and normalize emotional state scores
|
| 53 |
stress_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in STRESS_AUS if au <= len(avg_au_intensities)]))
|
| 54 |
anxiety_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in ANXIETY_AUS if au <= len(avg_au_intensities)]))
|
| 55 |
-
|
| 56 |
|
| 57 |
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10))
|
| 58 |
|
| 59 |
# Emotional state scores
|
| 60 |
-
states = ['Stress', 'Anxiety', '
|
| 61 |
-
scores = [stress_score, anxiety_score,
|
| 62 |
bars = ax1.bar(states, scores)
|
| 63 |
ax1.set_ylim(0, 1)
|
| 64 |
ax1.set_title('Emotional State Scores')
|
|
@@ -68,7 +69,7 @@ def process_video_for_facs(video_path):
|
|
| 68 |
f'{height:.2f}', ha='center', va='bottom')
|
| 69 |
|
| 70 |
# AU intensities
|
| 71 |
-
all_aus = sorted(set(STRESS_AUS + ANXIETY_AUS +
|
| 72 |
all_aus = [au for au in all_aus if au <= len(avg_au_intensities)]
|
| 73 |
au_labels = [f"AU{au}\n{AU_DESCRIPTIONS.get(au, '')}" for au in all_aus]
|
| 74 |
au_values = [avg_au_intensities[au-1] for au in all_aus]
|
|
@@ -89,7 +90,7 @@ def create_facs_analysis_tab():
|
|
| 89 |
gr.Examples(["./assets/videos/fitness.mp4"], inputs=[input_video])
|
| 90 |
with gr.Column(scale=2):
|
| 91 |
output_image = gr.Image(label="Processed Frame")
|
| 92 |
-
facs_chart = gr.Plot(label="FACS Analysis for
|
| 93 |
|
| 94 |
# Automatically trigger the analysis when a video is uploaded
|
| 95 |
input_video.change(
|
|
|
|
| 4 |
import matplotlib.pyplot as plt
|
| 5 |
from app.app_utils import preprocess_frame_and_predict_aus
|
| 6 |
|
| 7 |
+
# Define the AUs associated with stress, anxiety, and happiness
|
| 8 |
STRESS_AUS = [4, 7, 17, 23, 24]
|
| 9 |
ANXIETY_AUS = [1, 2, 4, 5, 20]
|
| 10 |
+
HAPPINESS_AUS = [6, 12]
|
| 11 |
|
| 12 |
AU_DESCRIPTIONS = {
|
| 13 |
1: "Inner Brow Raiser",
|
| 14 |
2: "Outer Brow Raiser",
|
| 15 |
4: "Brow Lowerer",
|
| 16 |
5: "Upper Lid Raiser",
|
| 17 |
+
6: "Cheek Raiser",
|
| 18 |
7: "Lid Tightener",
|
| 19 |
+
12: "Lip Corner Puller",
|
| 20 |
17: "Chin Raiser",
|
| 21 |
20: "Lip Stretcher",
|
| 22 |
23: "Lip Tightener",
|
|
|
|
| 53 |
# Calculate and normalize emotional state scores
|
| 54 |
stress_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in STRESS_AUS if au <= len(avg_au_intensities)]))
|
| 55 |
anxiety_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in ANXIETY_AUS if au <= len(avg_au_intensities)]))
|
| 56 |
+
happiness_score = normalize_score(np.mean([avg_au_intensities[au-1] for au in HAPPINESS_AUS if au <= len(avg_au_intensities)]))
|
| 57 |
|
| 58 |
fig, (ax1, ax2) = plt.subplots(2, 1, figsize=(12, 10))
|
| 59 |
|
| 60 |
# Emotional state scores
|
| 61 |
+
states = ['Stress', 'Anxiety', 'Happiness']
|
| 62 |
+
scores = [stress_score, anxiety_score, happiness_score]
|
| 63 |
bars = ax1.bar(states, scores)
|
| 64 |
ax1.set_ylim(0, 1)
|
| 65 |
ax1.set_title('Emotional State Scores')
|
|
|
|
| 69 |
f'{height:.2f}', ha='center', va='bottom')
|
| 70 |
|
| 71 |
# AU intensities
|
| 72 |
+
all_aus = sorted(set(STRESS_AUS + ANXIETY_AUS + HAPPINESS_AUS))
|
| 73 |
all_aus = [au for au in all_aus if au <= len(avg_au_intensities)]
|
| 74 |
au_labels = [f"AU{au}\n{AU_DESCRIPTIONS.get(au, '')}" for au in all_aus]
|
| 75 |
au_values = [avg_au_intensities[au-1] for au in all_aus]
|
|
|
|
| 90 |
gr.Examples(["./assets/videos/fitness.mp4"], inputs=[input_video])
|
| 91 |
with gr.Column(scale=2):
|
| 92 |
output_image = gr.Image(label="Processed Frame")
|
| 93 |
+
facs_chart = gr.Plot(label="FACS Analysis for Stress, Anxiety, and Happiness")
|
| 94 |
|
| 95 |
# Automatically trigger the analysis when a video is uploaded
|
| 96 |
input_video.change(
|
tabs/__emotion_analysis.py
DELETED
|
@@ -1,36 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
-
import gradio as gr
|
| 5 |
-
|
| 6 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
| 7 |
-
|
| 8 |
-
emotion_tokenizer = AutoTokenizer.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
| 9 |
-
emotion_model = AutoModelForSequenceClassification.from_pretrained("j-hartmann/emotion-english-distilroberta-base")
|
| 10 |
-
emotion_labels = ["anger", "disgust", "fear", "joy", "neutral", "sadness", "surprise"]
|
| 11 |
-
|
| 12 |
-
def analyze_emotion(text):
|
| 13 |
-
try:
|
| 14 |
-
inputs = emotion_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 15 |
-
outputs = emotion_model(**inputs)
|
| 16 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 17 |
-
max_prob, max_index = torch.max(probs, dim=1)
|
| 18 |
-
return emotion_labels[max_index.item()], f"{max_prob.item():.4f}"
|
| 19 |
-
except Exception as e:
|
| 20 |
-
print(f"Error in emotion analysis: {e}")
|
| 21 |
-
return "Error", "N/A"
|
| 22 |
-
|
| 23 |
-
def create_emotion_tab():
|
| 24 |
-
with gr.Row():
|
| 25 |
-
with gr.Column(scale=2):
|
| 26 |
-
input_text = gr.Textbox(value='I actually speak to the expets myself to give you the best value you can get', lines=5, placeholder="Enter text here...", label="Input Text")
|
| 27 |
-
with gr.Row():
|
| 28 |
-
clear_btn = gr.Button("Clear", scale=1)
|
| 29 |
-
submit_btn = gr.Button("Analyze", scale=1, elem_classes="submit")
|
| 30 |
-
with gr.Column(scale=1):
|
| 31 |
-
output_emotion = gr.Textbox(label="Detected Emotion")
|
| 32 |
-
output_confidence = gr.Textbox(label="Emotion Confidence Score")
|
| 33 |
-
|
| 34 |
-
submit_btn.click(analyze_emotion, inputs=[input_text], outputs=[output_emotion, output_confidence])
|
| 35 |
-
clear_btn.click(lambda: ("", "", ""), outputs=[input_text, output_emotion, output_confidence])
|
| 36 |
-
gr.Examples(["I am so happy today!", "I feel terrible and sad.", "This is a neutral statement."], inputs=[input_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/__pycache__/FACS_analysis.cpython-310.pyc
CHANGED
|
Binary files a/tabs/__pycache__/FACS_analysis.cpython-310.pyc and b/tabs/__pycache__/FACS_analysis.cpython-310.pyc differ
|
|
|
tabs/__pycache__/deception_detection.cpython-310.pyc
ADDED
|
Binary file (17.9 kB). View file
|
|
|
tabs/__pycache__/heart_rate_variability.cpython-310.pyc
CHANGED
|
Binary files a/tabs/__pycache__/heart_rate_variability.cpython-310.pyc and b/tabs/__pycache__/heart_rate_variability.cpython-310.pyc differ
|
|
|
tabs/__pycache__/speech_stress_analysis.cpython-310.pyc
CHANGED
|
Binary files a/tabs/__pycache__/speech_stress_analysis.cpython-310.pyc and b/tabs/__pycache__/speech_stress_analysis.cpython-310.pyc differ
|
|
|
tabs/__pycache__/speech_stress_analysis.cpython-312.pyc
ADDED
|
Binary file (10.5 kB). View file
|
|
|
tabs/__sentiment_analysis.py
DELETED
|
@@ -1,36 +0,0 @@
|
|
| 1 |
-
import os
|
| 2 |
-
import torch
|
| 3 |
-
from transformers import AutoTokenizer, AutoModelForSequenceClassification
|
| 4 |
-
import gradio as gr
|
| 5 |
-
|
| 6 |
-
os.environ["TOKENIZERS_PARALLELISM"] = "true"
|
| 7 |
-
|
| 8 |
-
sentiment_tokenizer = AutoTokenizer.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
| 9 |
-
sentiment_model = AutoModelForSequenceClassification.from_pretrained("nlptown/bert-base-multilingual-uncased-sentiment")
|
| 10 |
-
sentiment_labels = ["very negative", "negative", "neutral", "positive", "very positive"]
|
| 11 |
-
|
| 12 |
-
def analyze_sentiment(text):
|
| 13 |
-
try:
|
| 14 |
-
inputs = sentiment_tokenizer(text, return_tensors="pt", truncation=True, padding=True, max_length=512)
|
| 15 |
-
outputs = sentiment_model(**inputs)
|
| 16 |
-
probs = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
| 17 |
-
max_prob, max_index = torch.max(probs, dim=1)
|
| 18 |
-
return sentiment_labels[max_index.item()], f"{max_prob.item():.4f}"
|
| 19 |
-
except Exception as e:
|
| 20 |
-
print(f"Error in sentiment analysis: {e}")
|
| 21 |
-
return "Error", "N/A"
|
| 22 |
-
|
| 23 |
-
def create_sentiment_tab():
|
| 24 |
-
with gr.Row():
|
| 25 |
-
with gr.Column(scale=2):
|
| 26 |
-
input_text = gr.Textbox(value="I actually speak to the expets myself to give you the best value you can get", lines=5, placeholder="Enter text here...", label="Input Text")
|
| 27 |
-
with gr.Row():
|
| 28 |
-
clear_btn = gr.Button("Clear", scale=1)
|
| 29 |
-
submit_btn = gr.Button("Analyze", scale=1, elem_classes="submit")
|
| 30 |
-
with gr.Column(scale=1):
|
| 31 |
-
output_sentiment = gr.Textbox(label="Detected Sentiment")
|
| 32 |
-
output_confidence = gr.Textbox(label="Sentiment Confidence Score")
|
| 33 |
-
|
| 34 |
-
submit_btn.click(analyze_sentiment, inputs=[input_text], outputs=[output_sentiment, output_confidence], queue=True)
|
| 35 |
-
clear_btn.click(lambda: ("", "", ""), outputs=[input_text, output_sentiment, output_confidence], queue=True)
|
| 36 |
-
gr.Examples(["I am so happy today!", "I feel terrible and sad.", "This is a neutral statement."], inputs=[input_text])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
tabs/deception_detection.py
ADDED
|
@@ -0,0 +1,601 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# tabs/deception_detection.py
|
| 2 |
+
|
| 3 |
+
import gradio as gr
|
| 4 |
+
import cv2
|
| 5 |
+
import numpy as np
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
from scipy.signal import butter, filtfilt, find_peaks
|
| 8 |
+
from typing import Tuple, Optional, Dict
|
| 9 |
+
import logging
|
| 10 |
+
from dataclasses import dataclass
|
| 11 |
+
from enum import Enum
|
| 12 |
+
import librosa
|
| 13 |
+
import moviepy.editor as mp
|
| 14 |
+
import os
|
| 15 |
+
import tempfile
|
| 16 |
+
import torch
|
| 17 |
+
import torch.nn as nn
|
| 18 |
+
from transformers import Wav2Vec2ForCTC, Wav2Vec2Tokenizer
|
| 19 |
+
import mediapipe as mp_mediapipe
|
| 20 |
+
import re
|
| 21 |
+
|
| 22 |
+
# Configure logging
|
| 23 |
+
logging.basicConfig(level=logging.INFO)
|
| 24 |
+
logger = logging.getLogger(__name__)
|
| 25 |
+
|
| 26 |
+
# Define Enums and DataClasses
|
| 27 |
+
class DeceptionLevel(Enum):
|
| 28 |
+
LOW = 'Low'
|
| 29 |
+
MODERATE = 'Moderate'
|
| 30 |
+
HIGH = 'High'
|
| 31 |
+
|
| 32 |
+
@dataclass
|
| 33 |
+
class Metric:
|
| 34 |
+
name: str
|
| 35 |
+
threshold: float
|
| 36 |
+
value: float = 0.0
|
| 37 |
+
detected: bool = False
|
| 38 |
+
|
| 39 |
+
def analyze(self, new_value: float):
|
| 40 |
+
self.value = new_value
|
| 41 |
+
self.detected = self.value > self.threshold
|
| 42 |
+
|
| 43 |
+
class SignalProcessor:
|
| 44 |
+
def __init__(self, fs: float):
|
| 45 |
+
self.fs = fs # Sampling frequency
|
| 46 |
+
|
| 47 |
+
def bandpass_filter(self, data: np.ndarray, lowcut: float = 0.75, highcut: float = 3.0) -> np.ndarray:
|
| 48 |
+
"""Apply bandpass filter to signal."""
|
| 49 |
+
nyq = 0.5 * self.fs
|
| 50 |
+
low = lowcut / nyq
|
| 51 |
+
high = highcut / nyq
|
| 52 |
+
b, a = butter(2, [low, high], btype='band')
|
| 53 |
+
filtered = filtfilt(b, a, data)
|
| 54 |
+
logger.debug("Applied bandpass filter.")
|
| 55 |
+
return filtered
|
| 56 |
+
|
| 57 |
+
def find_peaks_in_signal(self, signal: np.ndarray) -> np.ndarray:
|
| 58 |
+
"""Find peaks in the signal."""
|
| 59 |
+
min_distance = int(60 / 180 * self.fs) # At least 60 BPM (180 BPM max)
|
| 60 |
+
peaks, _ = find_peaks(signal, distance=min_distance)
|
| 61 |
+
logger.debug(f"Detected {len(peaks)} peaks in the signal.")
|
| 62 |
+
return peaks
|
| 63 |
+
|
| 64 |
+
class DeceptionAnalyzer:
|
| 65 |
+
def __init__(self):
|
| 66 |
+
self.metrics = {
|
| 67 |
+
"HRV Suppression": Metric("HRV Suppression", threshold=30.0),
|
| 68 |
+
"Heart Rate Elevation": Metric("Heart Rate Elevation", threshold=100.0),
|
| 69 |
+
"Rhythm Irregularity": Metric("Rhythm Irregularity", threshold=0.1),
|
| 70 |
+
"Blink Rate": Metric("Blink Rate", threshold=25.0),
|
| 71 |
+
"Head Movements": Metric("Head Movements", threshold=10.0),
|
| 72 |
+
"Speech Stress": Metric("Speech Stress", threshold=0.5),
|
| 73 |
+
"Speech Pitch Variation": Metric("Speech Pitch Variation", threshold=50.0),
|
| 74 |
+
"Pauses and Hesitations": Metric("Pauses and Hesitations", threshold=2.0),
|
| 75 |
+
"Filler Words": Metric("Filler Words", threshold=5.0),
|
| 76 |
+
}
|
| 77 |
+
|
| 78 |
+
def analyze_signals(self, heart_rate: np.ndarray, rr_intervals: np.ndarray, hrv_rmssd: float,
|
| 79 |
+
speech_features: Dict[str, float], facial_features: Dict[str, float]) -> Tuple[Dict[str, Dict], float, DeceptionLevel]:
|
| 80 |
+
"""
|
| 81 |
+
Analyze the extracted signals and compute deception probability.
|
| 82 |
+
"""
|
| 83 |
+
# Analyze HRV Suppression
|
| 84 |
+
self.metrics["HRV Suppression"].analyze(hrv_rmssd)
|
| 85 |
+
|
| 86 |
+
# Analyze Heart Rate Elevation
|
| 87 |
+
avg_heart_rate = np.mean(heart_rate)
|
| 88 |
+
self.metrics["Heart Rate Elevation"].analyze(avg_heart_rate)
|
| 89 |
+
|
| 90 |
+
# Analyze Rhythm Irregularity
|
| 91 |
+
rhythm_irregularity = np.std(rr_intervals) / np.mean(rr_intervals)
|
| 92 |
+
self.metrics["Rhythm Irregularity"].analyze(rhythm_irregularity)
|
| 93 |
+
|
| 94 |
+
# Analyze Speech Features
|
| 95 |
+
for key in ["Speech Stress", "Speech Pitch Variation", "Pauses and Hesitations", "Filler Words"]:
|
| 96 |
+
if key in speech_features:
|
| 97 |
+
self.metrics[key].analyze(speech_features[key])
|
| 98 |
+
|
| 99 |
+
# Analyze Facial Features
|
| 100 |
+
# Placeholder values; in actual implementation, replace with real values
|
| 101 |
+
self.metrics["Blink Rate"].analyze(facial_features.get("Blink Rate", 0))
|
| 102 |
+
self.metrics["Head Movements"].analyze(facial_features.get("Head Movements", 0))
|
| 103 |
+
|
| 104 |
+
# Calculate deception probability
|
| 105 |
+
detected_indicators = sum(1 for m in self.metrics.values() if m.detected)
|
| 106 |
+
total_indicators = len(self.metrics)
|
| 107 |
+
probability = (detected_indicators / total_indicators) * 100
|
| 108 |
+
|
| 109 |
+
# Determine deception level
|
| 110 |
+
if probability < 30:
|
| 111 |
+
level = DeceptionLevel.LOW
|
| 112 |
+
elif probability < 70:
|
| 113 |
+
level = DeceptionLevel.MODERATE
|
| 114 |
+
else:
|
| 115 |
+
level = DeceptionLevel.HIGH
|
| 116 |
+
|
| 117 |
+
# Prepare metrics for visualization
|
| 118 |
+
metrics_data = {name: {
|
| 119 |
+
"value": m.value,
|
| 120 |
+
"threshold": m.threshold,
|
| 121 |
+
"detected": m.detected
|
| 122 |
+
} for name, m in self.metrics.items()}
|
| 123 |
+
|
| 124 |
+
return metrics_data, probability, level
|
| 125 |
+
|
| 126 |
+
def load_transcription_model(model_name: str) -> Optional[torch.nn.Module]:
|
| 127 |
+
"""
|
| 128 |
+
Load the speech-to-text transcription model.
|
| 129 |
+
"""
|
| 130 |
+
try:
|
| 131 |
+
model = Wav2Vec2ForCTC.from_pretrained(
|
| 132 |
+
model_name,
|
| 133 |
+
ignore_mismatched_sizes=True
|
| 134 |
+
)
|
| 135 |
+
model.eval()
|
| 136 |
+
logger.info("Transcription model loaded successfully.")
|
| 137 |
+
return model
|
| 138 |
+
except Exception as e:
|
| 139 |
+
logger.error(f"Error loading transcription model: {e}")
|
| 140 |
+
return None
|
| 141 |
+
|
| 142 |
+
def load_models() -> Dict[str, torch.nn.Module]:
|
| 143 |
+
"""
|
| 144 |
+
Load all necessary models for the deception detection system.
|
| 145 |
+
"""
|
| 146 |
+
models_dict = {}
|
| 147 |
+
try:
|
| 148 |
+
# Load Transcription Model
|
| 149 |
+
transcription_model_name = 'facebook/wav2vec2-base-960h'
|
| 150 |
+
transcription_model = load_transcription_model(transcription_model_name)
|
| 151 |
+
if transcription_model:
|
| 152 |
+
models_dict['transcription_model'] = transcription_model
|
| 153 |
+
|
| 154 |
+
except Exception as e:
|
| 155 |
+
logger.error(f"Error loading models: {e}")
|
| 156 |
+
|
| 157 |
+
return models_dict
|
| 158 |
+
|
| 159 |
+
def transcribe_audio(audio_path: str, transcription_model: nn.Module) -> str:
|
| 160 |
+
"""
|
| 161 |
+
Transcribe audio to text using Wav2Vec2 model.
|
| 162 |
+
"""
|
| 163 |
+
try:
|
| 164 |
+
tokenizer = Wav2Vec2Tokenizer.from_pretrained("facebook/wav2vec2-base-960h")
|
| 165 |
+
y, sr = librosa.load(audio_path, sr=16000)
|
| 166 |
+
input_values = tokenizer(y, return_tensors="pt", padding="longest").input_values
|
| 167 |
+
|
| 168 |
+
with torch.no_grad():
|
| 169 |
+
logits = transcription_model(input_values).logits
|
| 170 |
+
|
| 171 |
+
predicted_ids = torch.argmax(logits, dim=-1)
|
| 172 |
+
transcription = tokenizer.decode(predicted_ids[0])
|
| 173 |
+
|
| 174 |
+
# Clean transcription
|
| 175 |
+
transcription = transcription.lower()
|
| 176 |
+
transcription = re.sub(r'[^a-z\s]', '', transcription)
|
| 177 |
+
|
| 178 |
+
return transcription
|
| 179 |
+
except Exception as e:
|
| 180 |
+
logger.error(f"Error transcribing audio: {str(e)}")
|
| 181 |
+
return ""
|
| 182 |
+
|
| 183 |
+
def detect_silence(y: np.ndarray, sr: int, top_db: int = 30) -> float:
|
| 184 |
+
"""
|
| 185 |
+
Detect total duration of silence in the audio.
|
| 186 |
+
"""
|
| 187 |
+
try:
|
| 188 |
+
intervals = librosa.effects.split(y, top_db=top_db)
|
| 189 |
+
silence_duration = 0.0
|
| 190 |
+
prev_end = 0
|
| 191 |
+
for start, end in intervals:
|
| 192 |
+
silence = (start - prev_end) / sr
|
| 193 |
+
silence_duration += silence
|
| 194 |
+
prev_end = end
|
| 195 |
+
# Add silence after the last interval
|
| 196 |
+
silence_duration += (len(y) - prev_end) / sr
|
| 197 |
+
return silence_duration
|
| 198 |
+
except Exception as e:
|
| 199 |
+
logger.error(f"Error detecting silence: {str(e)}")
|
| 200 |
+
return 0.0
|
| 201 |
+
|
| 202 |
+
def count_filler_words(transcription: str) -> int:
|
| 203 |
+
"""
|
| 204 |
+
Count the number of filler words in the transcription.
|
| 205 |
+
"""
|
| 206 |
+
filler_words_list = ['um', 'uh', 'er', 'ah', 'like', 'you know', 'so']
|
| 207 |
+
return sum(transcription.split().count(word) for word in filler_words_list)
|
| 208 |
+
|
| 209 |
+
def analyze_speech(audio_path: str, transcription_model: nn.Module) -> Dict[str, float]:
|
| 210 |
+
"""
|
| 211 |
+
Analyze speech from the audio file and extract features.
|
| 212 |
+
"""
|
| 213 |
+
if not audio_path:
|
| 214 |
+
logger.warning("No audio path provided.")
|
| 215 |
+
return {}
|
| 216 |
+
|
| 217 |
+
try:
|
| 218 |
+
# Load audio file
|
| 219 |
+
y, sr = librosa.load(audio_path, sr=16000) # Ensure consistent sampling rate
|
| 220 |
+
logger.info(f"Loaded audio file with sampling rate: {sr} Hz")
|
| 221 |
+
|
| 222 |
+
# Extract prosodic features
|
| 223 |
+
pitches, magnitudes = librosa.piptrack(y=y, sr=sr)
|
| 224 |
+
pitch_values = pitches[magnitudes > np.median(magnitudes)]
|
| 225 |
+
avg_pitch = np.mean(pitch_values) if len(pitch_values) > 0 else 0.0
|
| 226 |
+
pitch_variation = np.std(pitch_values) if len(pitch_values) > 0 else 0.0
|
| 227 |
+
|
| 228 |
+
# Calculate speech stress based on pitch variation
|
| 229 |
+
speech_stress = pitch_variation / (avg_pitch if avg_pitch != 0 else 1)
|
| 230 |
+
|
| 231 |
+
# Calculate speech rate (words per minute)
|
| 232 |
+
transcription = transcribe_audio(audio_path, transcription_model)
|
| 233 |
+
words = transcription.split()
|
| 234 |
+
duration_minutes = librosa.get_duration(y=y, sr=sr) / 60
|
| 235 |
+
speech_rate = len(words) / duration_minutes if duration_minutes > 0 else 0.0
|
| 236 |
+
|
| 237 |
+
# Detect pauses and hesitations
|
| 238 |
+
silence_duration = detect_silence(y, sr)
|
| 239 |
+
filler_words = count_filler_words(transcription)
|
| 240 |
+
|
| 241 |
+
logger.info(f"Speech Analysis - Avg Pitch: {avg_pitch:.2f} Hz, Pitch Variation: {pitch_variation:.2f} Hz")
|
| 242 |
+
logger.info(f"Speech Stress Level: {speech_stress:.2f}")
|
| 243 |
+
logger.info(f"Speech Rate: {speech_rate:.2f} WPM")
|
| 244 |
+
logger.info(f"Silence Duration: {silence_duration:.2f} seconds")
|
| 245 |
+
logger.info(f"Filler Words Count: {filler_words}")
|
| 246 |
+
|
| 247 |
+
# Return extracted features
|
| 248 |
+
return {
|
| 249 |
+
"Speech Stress": speech_stress,
|
| 250 |
+
"Speech Pitch Variation": pitch_variation,
|
| 251 |
+
"Pauses and Hesitations": silence_duration,
|
| 252 |
+
"Filler Words": filler_words
|
| 253 |
+
}
|
| 254 |
+
|
| 255 |
+
except Exception as e:
|
| 256 |
+
logger.error(f"Error analyzing speech: {str(e)}")
|
| 257 |
+
return {}
|
| 258 |
+
|
| 259 |
+
def extract_audio_from_video(video_path: str) -> Optional[str]:
|
| 260 |
+
"""
|
| 261 |
+
Extract audio from the video file and save it as a temporary WAV file.
|
| 262 |
+
"""
|
| 263 |
+
if not video_path:
|
| 264 |
+
logger.warning("No video path provided for audio extraction.")
|
| 265 |
+
return None
|
| 266 |
+
|
| 267 |
+
try:
|
| 268 |
+
video_clip = mp.VideoFileClip(video_path)
|
| 269 |
+
if video_clip.audio is None:
|
| 270 |
+
logger.warning("No audio track found in the video.")
|
| 271 |
+
video_clip.close()
|
| 272 |
+
return None
|
| 273 |
+
|
| 274 |
+
temp_audio_fd, temp_audio_path = tempfile.mkstemp(suffix=".wav")
|
| 275 |
+
os.close(temp_audio_fd) # Close the file descriptor
|
| 276 |
+
|
| 277 |
+
video_clip.audio.write_audiofile(temp_audio_path, logger=None)
|
| 278 |
+
video_clip.close()
|
| 279 |
+
|
| 280 |
+
logger.info(f"Extracted audio to temporary file: {temp_audio_path}")
|
| 281 |
+
return temp_audio_path
|
| 282 |
+
|
| 283 |
+
except Exception as e:
|
| 284 |
+
logger.error(f"Error extracting audio from video: {str(e)}")
|
| 285 |
+
return None
|
| 286 |
+
|
| 287 |
+
def detect_blink(face_landmarks, frame: np.ndarray) -> float:
|
| 288 |
+
"""
|
| 289 |
+
Detect blink rate from facial landmarks.
|
| 290 |
+
Placeholder implementation.
|
| 291 |
+
"""
|
| 292 |
+
# Implement Eye Aspect Ratio (EAR) or other blink detection methods
|
| 293 |
+
return np.random.uniform(10, 20) # Example blink rate
|
| 294 |
+
|
| 295 |
+
def estimate_head_movement(face_landmarks) -> float:
|
| 296 |
+
"""
|
| 297 |
+
Estimate head movements based on facial landmarks.
|
| 298 |
+
Placeholder implementation.
|
| 299 |
+
"""
|
| 300 |
+
# Implement head pose estimation to detect nods/shakes
|
| 301 |
+
return np.random.uniform(5, 15) # Example head movements
|
| 302 |
+
|
| 303 |
+
def create_visualization(metrics: Dict, probability: float, heart_rate: np.ndarray,
|
| 304 |
+
duration: float, level: DeceptionLevel, speech_features: Dict[str, float]) -> plt.Figure:
|
| 305 |
+
"""
|
| 306 |
+
Create visualization of analysis results.
|
| 307 |
+
"""
|
| 308 |
+
# Set figure style parameters
|
| 309 |
+
plt.style.use('default')
|
| 310 |
+
plt.rcParams.update({
|
| 311 |
+
'figure.facecolor': 'white',
|
| 312 |
+
'axes.facecolor': 'white',
|
| 313 |
+
'grid.color': '#E0E0E0',
|
| 314 |
+
'grid.linestyle': '-',
|
| 315 |
+
'grid.alpha': 0.3,
|
| 316 |
+
'font.size': 10,
|
| 317 |
+
'axes.labelsize': 10,
|
| 318 |
+
'axes.titlesize': 12,
|
| 319 |
+
'figure.titlesize': 14,
|
| 320 |
+
'font.family': ['DejaVu Sans', 'Arial', 'sans-serif']
|
| 321 |
+
})
|
| 322 |
+
|
| 323 |
+
# Create figure and axes
|
| 324 |
+
fig = plt.figure(figsize=(12, 20))
|
| 325 |
+
|
| 326 |
+
# Create polar plot for deception probability gauge
|
| 327 |
+
ax1 = fig.add_subplot(4, 1, 1, projection='polar')
|
| 328 |
+
|
| 329 |
+
# Create other subplots
|
| 330 |
+
ax2 = fig.add_subplot(4, 1, 2)
|
| 331 |
+
ax3 = fig.add_subplot(4, 1, 3)
|
| 332 |
+
ax4 = fig.add_subplot(4, 1, 4)
|
| 333 |
+
|
| 334 |
+
# Plot 1: Deception Probability Gauge
|
| 335 |
+
# Create gauge plot
|
| 336 |
+
theta = np.linspace(0, np.pi, 100)
|
| 337 |
+
radius = np.ones(100)
|
| 338 |
+
ax1.plot(theta, radius, color='#E0E0E0', linewidth=30, alpha=0.3)
|
| 339 |
+
current_angle = (probability / 100) * np.pi
|
| 340 |
+
ax1.plot([0, current_angle], [0, 0.7], color='red', linewidth=5)
|
| 341 |
+
ax1.set_xticks([])
|
| 342 |
+
ax1.set_yticks([])
|
| 343 |
+
ax1.set_title(f'Deception Probability: {probability:.1f}% ({level.value})', pad=20, color='#333333')
|
| 344 |
+
ax1.set_theta_zero_location('N')
|
| 345 |
+
ax1.set_facecolor('white')
|
| 346 |
+
ax1.grid(False)
|
| 347 |
+
ax1.spines['polar'].set_visible(False)
|
| 348 |
+
|
| 349 |
+
# Plot 2: Metrics Bar Chart
|
| 350 |
+
names = list(metrics.keys())
|
| 351 |
+
values = [m["value"] for m in metrics.values()]
|
| 352 |
+
thresholds = [m["threshold"] for m in metrics.values()]
|
| 353 |
+
detected = [m["detected"] for m in metrics.values()]
|
| 354 |
+
x = np.arange(len(names))
|
| 355 |
+
width = 0.35
|
| 356 |
+
bar_colors = ['#FF6B6B' if d else '#4BB543' for d in detected]
|
| 357 |
+
ax2.bar(x - width/2, values, width, label='Current', color=bar_colors)
|
| 358 |
+
ax2.bar(x + width/2, thresholds, width, label='Threshold', color='#E0E0E0', alpha=0.7)
|
| 359 |
+
ax2.set_ylabel('Value')
|
| 360 |
+
ax2.set_title('Physiological, Facial, and Speech Indicators', pad=20)
|
| 361 |
+
ax2.set_xticks(x)
|
| 362 |
+
ax2.set_xticklabels(names, rotation=45, ha='right')
|
| 363 |
+
ax2.grid(True, axis='y', alpha=0.3)
|
| 364 |
+
ax2.legend(loc='upper right', framealpha=0.9)
|
| 365 |
+
|
| 366 |
+
# Plot 3: Heart Rate Over Time
|
| 367 |
+
time_axis = np.linspace(0, duration, len(heart_rate))
|
| 368 |
+
ax3.plot(time_axis, heart_rate, color='#3498db')
|
| 369 |
+
ax3.set_xlabel('Time (s)')
|
| 370 |
+
ax3.set_ylabel('Heart Rate (BPM)')
|
| 371 |
+
ax3.set_title('Heart Rate Over Time', pad=20)
|
| 372 |
+
ax3.grid(True, alpha=0.3)
|
| 373 |
+
|
| 374 |
+
# Plot 4: Speech Features
|
| 375 |
+
pauses = speech_features.get("Pauses and Hesitations", 0)
|
| 376 |
+
filler_words = speech_features.get("Filler Words", 0)
|
| 377 |
+
labels = ['Pauses (s)', 'Filler Words (count)']
|
| 378 |
+
values = [pauses, filler_words]
|
| 379 |
+
colors = ['#FFC300', '#FF5733']
|
| 380 |
+
ax4.bar(labels, values, color=colors)
|
| 381 |
+
ax4.set_ylabel('Count / Duration')
|
| 382 |
+
ax4.set_title('Pauses and Hesitations in Speech', pad=20)
|
| 383 |
+
ax4.grid(True, axis='y', alpha=0.3)
|
| 384 |
+
|
| 385 |
+
plt.tight_layout()
|
| 386 |
+
return fig
|
| 387 |
+
|
| 388 |
+
def process_video_and_audio(video_path: str, models: Dict[str, torch.nn.Module]) -> Tuple[Optional[np.ndarray], Optional[plt.Figure]]:
|
| 389 |
+
"""
|
| 390 |
+
Process video and audio, perform deception analysis.
|
| 391 |
+
"""
|
| 392 |
+
logger.info("Starting video and audio processing.")
|
| 393 |
+
if not video_path:
|
| 394 |
+
logger.warning("No video path provided.")
|
| 395 |
+
return None, None
|
| 396 |
+
|
| 397 |
+
try:
|
| 398 |
+
# Extract audio from video
|
| 399 |
+
audio_path = extract_audio_from_video(video_path)
|
| 400 |
+
if not audio_path:
|
| 401 |
+
logger.warning("No audio available for speech analysis.")
|
| 402 |
+
|
| 403 |
+
# Initialize video capture
|
| 404 |
+
cap = cv2.VideoCapture(video_path)
|
| 405 |
+
if not cap.isOpened():
|
| 406 |
+
logger.error("Failed to open video file.")
|
| 407 |
+
return None, None
|
| 408 |
+
|
| 409 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 410 |
+
if fps <= 0 or fps != fps:
|
| 411 |
+
logger.error("Invalid frame rate detected.")
|
| 412 |
+
cap.release()
|
| 413 |
+
return None, None
|
| 414 |
+
logger.info(f"Video FPS: {fps}")
|
| 415 |
+
|
| 416 |
+
# Initialize processors
|
| 417 |
+
signal_processor = SignalProcessor(fps)
|
| 418 |
+
analyzer = DeceptionAnalyzer()
|
| 419 |
+
ppg_signal = []
|
| 420 |
+
last_frame = None
|
| 421 |
+
|
| 422 |
+
# Initialize Mediapipe for real-time facial feature extraction
|
| 423 |
+
mp_face_mesh = mp_mediapipe.solutions.face_mesh
|
| 424 |
+
face_mesh = mp_face_mesh.FaceMesh(static_image_mode=False, max_num_faces=1)
|
| 425 |
+
frame_counter = 0
|
| 426 |
+
|
| 427 |
+
# Process video frames
|
| 428 |
+
while True:
|
| 429 |
+
ret, frame = cap.read()
|
| 430 |
+
if not ret:
|
| 431 |
+
break
|
| 432 |
+
|
| 433 |
+
frame_counter += 1
|
| 434 |
+
|
| 435 |
+
# Extract PPG signal from green channel
|
| 436 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 437 |
+
green_channel = frame_rgb[:, :, 1]
|
| 438 |
+
ppg_signal.append(np.mean(green_channel))
|
| 439 |
+
|
| 440 |
+
# Extract facial features
|
| 441 |
+
results = face_mesh.process(frame_rgb)
|
| 442 |
+
if results.multi_face_landmarks:
|
| 443 |
+
face_landmarks = results.multi_face_landmarks[0]
|
| 444 |
+
# Blink Detection
|
| 445 |
+
blink = detect_blink(face_landmarks, frame)
|
| 446 |
+
analyzer.metrics["Blink Rate"].analyze(blink)
|
| 447 |
+
|
| 448 |
+
# Head Movement Detection
|
| 449 |
+
head_movement = estimate_head_movement(face_landmarks)
|
| 450 |
+
analyzer.metrics["Head Movements"].analyze(head_movement)
|
| 451 |
+
else:
|
| 452 |
+
analyzer.metrics["Blink Rate"].analyze(0.0)
|
| 453 |
+
analyzer.metrics["Head Movements"].analyze(0.0)
|
| 454 |
+
|
| 455 |
+
# Store last frame
|
| 456 |
+
last_frame = cv2.resize(frame_rgb, (320, 240))
|
| 457 |
+
|
| 458 |
+
# Optional: Log progress every 100 frames
|
| 459 |
+
if frame_counter % 100 == 0:
|
| 460 |
+
logger.info(f"Processed {frame_counter} frames.")
|
| 461 |
+
|
| 462 |
+
cap.release()
|
| 463 |
+
face_mesh.close()
|
| 464 |
+
logger.info(f"Total frames processed: {frame_counter}")
|
| 465 |
+
|
| 466 |
+
if not ppg_signal or last_frame is None:
|
| 467 |
+
logger.error("No PPG signal extracted or last frame missing.")
|
| 468 |
+
return last_frame, None
|
| 469 |
+
|
| 470 |
+
# Convert PPG signal to numpy array
|
| 471 |
+
ppg_signal = np.array(ppg_signal)
|
| 472 |
+
logger.debug("PPG signal extracted.")
|
| 473 |
+
|
| 474 |
+
# Apply bandpass filter
|
| 475 |
+
filtered_signal = signal_processor.bandpass_filter(ppg_signal)
|
| 476 |
+
logger.debug("Filtered PPG signal.")
|
| 477 |
+
|
| 478 |
+
# Find peaks in the filtered signal
|
| 479 |
+
peaks = signal_processor.find_peaks_in_signal(filtered_signal)
|
| 480 |
+
|
| 481 |
+
if len(peaks) < 2:
|
| 482 |
+
logger.warning("Insufficient peaks detected. Signal quality may be poor.")
|
| 483 |
+
return last_frame, None # Return last_frame but no analysis
|
| 484 |
+
|
| 485 |
+
# Calculate RR intervals in milliseconds
|
| 486 |
+
rr_intervals = np.diff(peaks) / fps * 1000 # ms
|
| 487 |
+
heart_rate = 60 * fps / np.diff(peaks) # BPM
|
| 488 |
+
|
| 489 |
+
if len(rr_intervals) == 0 or len(heart_rate) == 0:
|
| 490 |
+
logger.error("Failed to calculate RR intervals or heart rate.")
|
| 491 |
+
return last_frame, None
|
| 492 |
+
|
| 493 |
+
# Calculate RMSSD (Root Mean Square of Successive Differences)
|
| 494 |
+
hrv_rmssd = np.sqrt(np.mean(np.diff(rr_intervals) ** 2))
|
| 495 |
+
logger.debug(f"Calculated RMSSD: {hrv_rmssd:.2f} ms")
|
| 496 |
+
|
| 497 |
+
# Analyze speech
|
| 498 |
+
if audio_path and 'transcription_model' in models:
|
| 499 |
+
speech_features = analyze_speech(audio_path, models['transcription_model'])
|
| 500 |
+
else:
|
| 501 |
+
speech_features = {}
|
| 502 |
+
|
| 503 |
+
# Analyze signals
|
| 504 |
+
metrics, probability, level = analyzer.analyze_signals(
|
| 505 |
+
heart_rate, rr_intervals, hrv_rmssd, speech_features,
|
| 506 |
+
{}
|
| 507 |
+
)
|
| 508 |
+
|
| 509 |
+
# Create visualization
|
| 510 |
+
duration = len(ppg_signal) / fps # seconds
|
| 511 |
+
fig = create_visualization(
|
| 512 |
+
metrics, probability, heart_rate,
|
| 513 |
+
duration, level, speech_features
|
| 514 |
+
)
|
| 515 |
+
|
| 516 |
+
# Clean up temporary audio file if it was extracted
|
| 517 |
+
if audio_path and os.path.exists(audio_path):
|
| 518 |
+
try:
|
| 519 |
+
os.remove(audio_path)
|
| 520 |
+
logger.info(f"Deleted temporary audio file: {audio_path}")
|
| 521 |
+
except Exception as e:
|
| 522 |
+
logger.error(f"Error deleting temporary audio file: {str(e)}")
|
| 523 |
+
|
| 524 |
+
logger.info("Video and audio processing completed successfully.")
|
| 525 |
+
return last_frame, fig
|
| 526 |
+
|
| 527 |
+
except Exception as e:
|
| 528 |
+
logger.error(f"Error processing video and audio: {str(e)}")
|
| 529 |
+
return None, None
|
| 530 |
+
|
| 531 |
+
def create_deception_detection_tab(models: Dict[str, torch.nn.Module]) -> gr.Blocks:
|
| 532 |
+
"""
|
| 533 |
+
Create the deception detection interface tab using Gradio.
|
| 534 |
+
"""
|
| 535 |
+
def analyze(video):
|
| 536 |
+
try:
|
| 537 |
+
if video is None:
|
| 538 |
+
return None, None
|
| 539 |
+
video_path = video
|
| 540 |
+
logger.info(f"Received video for analysis: {video_path}")
|
| 541 |
+
|
| 542 |
+
if not os.path.exists(video_path):
|
| 543 |
+
logger.error("Video file does not exist.")
|
| 544 |
+
return None, None
|
| 545 |
+
|
| 546 |
+
last_frame, fig = process_video_and_audio(video_path, models)
|
| 547 |
+
if fig:
|
| 548 |
+
return last_frame, fig
|
| 549 |
+
else:
|
| 550 |
+
return last_frame, None
|
| 551 |
+
except Exception as e:
|
| 552 |
+
logger.error(f"Error in analyze function: {str(e)}")
|
| 553 |
+
return None, None
|
| 554 |
+
|
| 555 |
+
with gr.Blocks() as deception_interface:
|
| 556 |
+
with gr.Row():
|
| 557 |
+
with gr.Column(scale=1):
|
| 558 |
+
input_video = gr.Video(label="Upload Video for Deception Analysis")
|
| 559 |
+
gr.Markdown("""
|
| 560 |
+
### Deception Level Analysis
|
| 561 |
+
|
| 562 |
+
This analysis evaluates physiological, facial, and speech indicators
|
| 563 |
+
that may suggest deceptive behavior.
|
| 564 |
+
|
| 565 |
+
**Physiological Indicators:**
|
| 566 |
+
- ◇ HRV Suppression
|
| 567 |
+
- ◇ Heart Rate Elevation
|
| 568 |
+
- ◇ Rhythm Irregularity
|
| 569 |
+
|
| 570 |
+
**Facial Indicators:**
|
| 571 |
+
- ◇ Blink Rate
|
| 572 |
+
- ◇ Head Movements
|
| 573 |
+
|
| 574 |
+
**Speech Indicators:**
|
| 575 |
+
- ◇ Speech Stress
|
| 576 |
+
- ◇ Speech Pitch Variation
|
| 577 |
+
- ◇ Pauses and Hesitations
|
| 578 |
+
- ◇ Filler Words
|
| 579 |
+
|
| 580 |
+
**Interpretation:**
|
| 581 |
+
- **Low (0-30%):** Minimal indicators
|
| 582 |
+
- **Moderate (30-70%):** Some indicators
|
| 583 |
+
- **High (>70%):** Strong indicators
|
| 584 |
+
|
| 585 |
+
**Important Note:**
|
| 586 |
+
This analysis is for research purposes only.
|
| 587 |
+
Results should not be used as definitive proof
|
| 588 |
+
of deception or truthfulness.
|
| 589 |
+
""")
|
| 590 |
+
with gr.Column(scale=2):
|
| 591 |
+
output_frame = gr.Image(label="Last Frame of Video", height=240)
|
| 592 |
+
analysis_plot = gr.Plot(label="Deception Analysis")
|
| 593 |
+
|
| 594 |
+
# Configure automatic analysis upon video upload
|
| 595 |
+
input_video.change(
|
| 596 |
+
fn=analyze,
|
| 597 |
+
inputs=[input_video],
|
| 598 |
+
outputs=[output_frame, analysis_plot]
|
| 599 |
+
)
|
| 600 |
+
|
| 601 |
+
return deception_interface
|
tabs/heart_rate_variability.py
ADDED
|
@@ -0,0 +1,220 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import cv2
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
from scipy.signal import butter, filtfilt, find_peaks
|
| 6 |
+
import logging
|
| 7 |
+
|
| 8 |
+
# Configure logging
|
| 9 |
+
logging.basicConfig(level=logging.INFO)
|
| 10 |
+
logger = logging.getLogger(__name__)
|
| 11 |
+
|
| 12 |
+
def get_stress_level(rmssd, hr_mean, hr_std):
|
| 13 |
+
"""
|
| 14 |
+
Calculate stress level based on HRV parameters.
|
| 15 |
+
Returns both numerical value (0-100) and category.
|
| 16 |
+
"""
|
| 17 |
+
# RMSSD factor (lower RMSSD = higher stress)
|
| 18 |
+
rmssd_normalized = max(0, min(100, (150 - rmssd) / 1.5))
|
| 19 |
+
|
| 20 |
+
# Heart rate factor (higher HR = higher stress)
|
| 21 |
+
hr_factor = max(0, min(100, (hr_mean - 60) * 2))
|
| 22 |
+
|
| 23 |
+
# Heart rate variability factor (lower variability = higher stress)
|
| 24 |
+
hr_variability_factor = max(0, min(100, hr_std * 5))
|
| 25 |
+
|
| 26 |
+
# Combine factors with weights
|
| 27 |
+
stress_value = (0.4 * rmssd_normalized +
|
| 28 |
+
0.4 * hr_factor +
|
| 29 |
+
0.2 * hr_variability_factor)
|
| 30 |
+
|
| 31 |
+
# Determine category
|
| 32 |
+
if stress_value < 30:
|
| 33 |
+
category = "Low"
|
| 34 |
+
elif stress_value < 60:
|
| 35 |
+
category = "Moderate"
|
| 36 |
+
else:
|
| 37 |
+
category = "High"
|
| 38 |
+
|
| 39 |
+
return stress_value, category
|
| 40 |
+
|
| 41 |
+
def get_anxiety_level(value):
|
| 42 |
+
"""Get anxiety level category based on value."""
|
| 43 |
+
if value < 30:
|
| 44 |
+
return "Low"
|
| 45 |
+
elif value < 70:
|
| 46 |
+
return "Moderate"
|
| 47 |
+
else:
|
| 48 |
+
return "High"
|
| 49 |
+
|
| 50 |
+
def calculate_anxiety_index(heart_rate, hrv):
|
| 51 |
+
"""Calculate anxiety index based on heart rate and HRV."""
|
| 52 |
+
if len(heart_rate) < 2:
|
| 53 |
+
return 0
|
| 54 |
+
|
| 55 |
+
hr_mean = np.mean(heart_rate)
|
| 56 |
+
hr_std = np.std(heart_rate)
|
| 57 |
+
|
| 58 |
+
# Combine factors indicating anxiety
|
| 59 |
+
hr_factor = min(100, max(0, (hr_mean - 60) / 0.4))
|
| 60 |
+
variability_factor = min(100, (hr_std / 20) * 100)
|
| 61 |
+
hrv_factor = min(100, max(0, (100 - hrv) / 1))
|
| 62 |
+
|
| 63 |
+
anxiety_index = (hr_factor + variability_factor + hrv_factor) / 3
|
| 64 |
+
return anxiety_index
|
| 65 |
+
|
| 66 |
+
def process_video_for_hrv(video_path):
|
| 67 |
+
"""Process video and extract HRV metrics focusing on stress and anxiety."""
|
| 68 |
+
if not video_path:
|
| 69 |
+
return None, None
|
| 70 |
+
|
| 71 |
+
try:
|
| 72 |
+
cap = cv2.VideoCapture(video_path)
|
| 73 |
+
ppg_signal = []
|
| 74 |
+
fps = cap.get(cv2.CAP_PROP_FPS)
|
| 75 |
+
last_frame = None
|
| 76 |
+
|
| 77 |
+
while True:
|
| 78 |
+
ret, frame = cap.read()
|
| 79 |
+
if not ret:
|
| 80 |
+
break
|
| 81 |
+
|
| 82 |
+
# Extract green channel for PPG
|
| 83 |
+
frame_rgb = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
| 84 |
+
green_channel = frame_rgb[:, :, 1]
|
| 85 |
+
ppg_value = np.mean(green_channel)
|
| 86 |
+
ppg_signal.append(ppg_value)
|
| 87 |
+
|
| 88 |
+
# Store last frame for display
|
| 89 |
+
last_frame = cv2.resize(frame_rgb, (320, 240))
|
| 90 |
+
|
| 91 |
+
cap.release()
|
| 92 |
+
|
| 93 |
+
if not ppg_signal or last_frame is None:
|
| 94 |
+
return None, None
|
| 95 |
+
|
| 96 |
+
# Process PPG signal
|
| 97 |
+
ppg_signal = np.array(ppg_signal)
|
| 98 |
+
filtered_signal = filtfilt(*butter(2, [0.5, 5], fs=fps, btype='band'), ppg_signal)
|
| 99 |
+
|
| 100 |
+
# Find peaks for heart rate calculation
|
| 101 |
+
peaks, _ = find_peaks(filtered_signal, distance=int(0.5 * fps))
|
| 102 |
+
if len(peaks) < 2:
|
| 103 |
+
return None, None
|
| 104 |
+
|
| 105 |
+
# Calculate basic metrics
|
| 106 |
+
rr_intervals = np.diff(peaks) / fps * 1000
|
| 107 |
+
heart_rate = 60 * fps / np.diff(peaks)
|
| 108 |
+
hrv_rmssd = np.sqrt(np.mean(np.diff(rr_intervals) ** 2))
|
| 109 |
+
|
| 110 |
+
# Calculate stress and anxiety indices
|
| 111 |
+
hr_mean = np.mean(heart_rate)
|
| 112 |
+
hr_std = np.std(heart_rate)
|
| 113 |
+
stress_value, stress_category = get_stress_level(hrv_rmssd, hr_mean, hr_std)
|
| 114 |
+
anxiety_idx = calculate_anxiety_index(heart_rate, hrv_rmssd)
|
| 115 |
+
|
| 116 |
+
# Create visualization
|
| 117 |
+
fig = plt.figure(figsize=(12, 10))
|
| 118 |
+
|
| 119 |
+
# Plot 1: Stress and Anxiety Levels (top)
|
| 120 |
+
ax1 = plt.subplot(211)
|
| 121 |
+
metrics = ['Stress Level', 'Anxiety Level']
|
| 122 |
+
values = [stress_value, anxiety_idx]
|
| 123 |
+
colors = ['#FF6B6B', '#4D96FF'] # Warm red for stress, cool blue for anxiety
|
| 124 |
+
|
| 125 |
+
bars = ax1.bar(metrics, values, color=colors)
|
| 126 |
+
ax1.set_ylim(0, 100)
|
| 127 |
+
ax1.set_title('Stress and Anxiety Analysis', pad=20)
|
| 128 |
+
ax1.set_ylabel('Level (%)')
|
| 129 |
+
|
| 130 |
+
# Add value labels and status
|
| 131 |
+
for bar, val, metric in zip(bars, values, metrics):
|
| 132 |
+
height = val
|
| 133 |
+
status = stress_category if metric == 'Stress Level' else get_anxiety_level(val)
|
| 134 |
+
ax1.text(bar.get_x() + bar.get_width()/2., height + 1,
|
| 135 |
+
f'{val:.1f}%\n{status}',
|
| 136 |
+
ha='center', va='bottom')
|
| 137 |
+
|
| 138 |
+
# Plot 2: Heart Rate and HRV Trends (bottom)
|
| 139 |
+
ax2 = plt.subplot(212)
|
| 140 |
+
time = np.linspace(0, len(heart_rate), len(heart_rate))
|
| 141 |
+
ax2.plot(time, heart_rate, color='#2ECC71', label='Heart Rate', linewidth=2)
|
| 142 |
+
ax2.set_title('Heart Rate Variation')
|
| 143 |
+
ax2.set_xlabel('Beat Number')
|
| 144 |
+
ax2.set_ylabel('Heart Rate (BPM)')
|
| 145 |
+
ax2.grid(True, alpha=0.3)
|
| 146 |
+
|
| 147 |
+
# Add metrics information with color-coded status
|
| 148 |
+
def get_status_color(category):
|
| 149 |
+
return {
|
| 150 |
+
'Low': '#2ECC71', # Green
|
| 151 |
+
'Moderate': '#F1C40F', # Yellow
|
| 152 |
+
'High': '#E74C3C' # Red
|
| 153 |
+
}.get(category, 'black')
|
| 154 |
+
|
| 155 |
+
info_text = (
|
| 156 |
+
f'HRV (RMSSD): {hrv_rmssd:.1f} ms\n'
|
| 157 |
+
f'Average HR: {hr_mean:.1f} BPM\n'
|
| 158 |
+
f'Recording: {len(ppg_signal)/fps:.1f} s\n\n'
|
| 159 |
+
f'Stress Status: {stress_category}\n'
|
| 160 |
+
f'Anxiety Status: {get_anxiety_level(anxiety_idx)}'
|
| 161 |
+
)
|
| 162 |
+
|
| 163 |
+
# Add metrics box with gradient background
|
| 164 |
+
bbox_props = dict(
|
| 165 |
+
boxstyle='round,pad=0.5',
|
| 166 |
+
facecolor='white',
|
| 167 |
+
alpha=0.8,
|
| 168 |
+
edgecolor='gray'
|
| 169 |
+
)
|
| 170 |
+
|
| 171 |
+
ax2.text(0.02, 0.98, info_text,
|
| 172 |
+
transform=ax2.transAxes,
|
| 173 |
+
verticalalignment='top',
|
| 174 |
+
bbox=bbox_props,
|
| 175 |
+
fontsize=10)
|
| 176 |
+
|
| 177 |
+
plt.tight_layout()
|
| 178 |
+
|
| 179 |
+
return last_frame, fig
|
| 180 |
+
|
| 181 |
+
except Exception as e:
|
| 182 |
+
logger.error(f"Error processing video: {str(e)}")
|
| 183 |
+
return None, None
|
| 184 |
+
|
| 185 |
+
def create_heart_rate_variability_tab():
|
| 186 |
+
with gr.Row():
|
| 187 |
+
with gr.Column(scale=1):
|
| 188 |
+
input_video = gr.Video()
|
| 189 |
+
gr.Markdown("""
|
| 190 |
+
### Stress and Anxiety Analysis
|
| 191 |
+
|
| 192 |
+
**Measurements:**
|
| 193 |
+
- Stress Level (0-100%)
|
| 194 |
+
- Anxiety Level (0-100%)
|
| 195 |
+
- Heart Rate Variability (HRV)
|
| 196 |
+
|
| 197 |
+
**Status Levels:**
|
| 198 |
+
🟢 Low: Normal state
|
| 199 |
+
🟡 Moderate: Elevated levels
|
| 200 |
+
🔴 High: Significant elevation
|
| 201 |
+
|
| 202 |
+
**For best results:**
|
| 203 |
+
1. Ensure good lighting
|
| 204 |
+
2. Minimize movement
|
| 205 |
+
3. Face the camera directly
|
| 206 |
+
""")
|
| 207 |
+
gr.Examples(["./assets/videos/fitness.mp4"], inputs=[input_video])
|
| 208 |
+
|
| 209 |
+
with gr.Column(scale=2):
|
| 210 |
+
output_frame = gr.Image(label="Face Detection", height=240)
|
| 211 |
+
hrv_plot = gr.Plot(label="Stress and Anxiety Analysis")
|
| 212 |
+
|
| 213 |
+
# Automatically trigger analysis on video upload
|
| 214 |
+
input_video.change(
|
| 215 |
+
fn=process_video_for_hrv,
|
| 216 |
+
inputs=[input_video],
|
| 217 |
+
outputs=[output_frame, hrv_plot]
|
| 218 |
+
)
|
| 219 |
+
|
| 220 |
+
return input_video, output_frame, hrv_plot
|
tabs/speech_stress_analysis.py
CHANGED
|
@@ -2,93 +2,149 @@
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import librosa
|
| 5 |
-
import librosa.display
|
| 6 |
import numpy as np
|
| 7 |
import matplotlib.pyplot as plt
|
| 8 |
import tempfile
|
| 9 |
import warnings
|
| 10 |
|
| 11 |
-
|
| 12 |
-
warnings.filterwarnings("ignore", category=UserWarning, module='transformers')
|
| 13 |
|
| 14 |
def extract_audio_features(audio_file):
|
| 15 |
y, sr = librosa.load(audio_file, sr=None)
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
| 19 |
energy = librosa.feature.rms(y=y)[0]
|
| 20 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 21 |
|
| 22 |
def analyze_voice_stress(audio_file):
|
| 23 |
if not audio_file:
|
| 24 |
-
return "No audio file provided.", None
|
| 25 |
|
| 26 |
try:
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
# Calculate
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
stress_level
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
| 63 |
-
|
| 64 |
-
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
# Plotting
|
| 74 |
-
fig, axs = plt.subplots(
|
| 75 |
-
|
| 76 |
-
#
|
| 77 |
-
|
| 78 |
-
axs[0].set_title('
|
| 79 |
-
axs[0].set_ylabel('
|
| 80 |
-
|
| 81 |
-
|
| 82 |
-
|
| 83 |
-
axs[1].
|
| 84 |
-
axs[1].
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
|
| 88 |
-
axs[2].
|
| 89 |
-
axs[2]
|
| 90 |
-
|
| 91 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 92 |
|
| 93 |
plt.tight_layout()
|
| 94 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
|
|
@@ -96,31 +152,97 @@ def analyze_voice_stress(audio_file):
|
|
| 96 |
plot_path = temp_file.name
|
| 97 |
plt.close()
|
| 98 |
|
| 99 |
-
#
|
| 100 |
-
|
| 101 |
-
stress_interpretation = "Low"
|
| 102 |
-
elif normalized_stress < 66:
|
| 103 |
-
stress_interpretation = "Medium"
|
| 104 |
-
else:
|
| 105 |
-
stress_interpretation = "High"
|
| 106 |
|
| 107 |
-
return f"{normalized_stress:.2f}% - {stress_interpretation} Stress", plot_path
|
| 108 |
except Exception as e:
|
| 109 |
-
return f"Error: {str(e)}", None
|
| 110 |
-
|
| 111 |
-
def create_voice_stress_tab():
|
| 112 |
-
with gr.Row():
|
| 113 |
-
with gr.Column(scale=2):
|
| 114 |
-
input_audio = gr.Audio(label="Input Audio", type="filepath")
|
| 115 |
-
clear_btn = gr.Button("Clear", scale=1)
|
| 116 |
-
with gr.Column(scale=1):
|
| 117 |
-
output_stress = gr.Label(label="Stress Level")
|
| 118 |
-
output_plot = gr.Image(label="Stress Analysis Plot")
|
| 119 |
-
|
| 120 |
-
# Automatically trigger analysis when an audio file is uploaded
|
| 121 |
-
input_audio.change(analyze_voice_stress, inputs=[input_audio], outputs=[output_stress, output_plot])
|
| 122 |
|
| 123 |
-
clear_btn.click(lambda: (None, None), outputs=[input_audio, output_stress, output_plot])
|
| 124 |
-
|
| 125 |
-
gr.Examples(["./assets/audio/fitness.wav"], inputs=[input_audio])
|
| 126 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
import gradio as gr
|
| 4 |
import librosa
|
|
|
|
| 5 |
import numpy as np
|
| 6 |
import matplotlib.pyplot as plt
|
| 7 |
import tempfile
|
| 8 |
import warnings
|
| 9 |
|
| 10 |
+
warnings.filterwarnings("ignore", category=UserWarning, module='librosa')
|
|
|
|
| 11 |
|
| 12 |
def extract_audio_features(audio_file):
|
| 13 |
y, sr = librosa.load(audio_file, sr=None)
|
| 14 |
+
|
| 15 |
+
# Fundamental frequency estimation using librosa.pyin
|
| 16 |
+
f0, voiced_flag, voiced_probs = librosa.pyin(y, fmin=75, fmax=600)
|
| 17 |
+
f0 = f0[~np.isnan(f0)] # Remove unvoiced frames
|
| 18 |
+
|
| 19 |
+
# Energy (intensity)
|
| 20 |
energy = librosa.feature.rms(y=y)[0]
|
| 21 |
+
|
| 22 |
+
# MFCCs (Mel-frequency cepstral coefficients)
|
| 23 |
+
mfccs = librosa.feature.mfcc(y=y, sr=sr, n_mfcc=13)
|
| 24 |
+
|
| 25 |
+
# Onset envelope for speech rate estimation
|
| 26 |
+
onset_env = librosa.onset.onset_strength(y=y, sr=sr)
|
| 27 |
+
tempo, _ = librosa.beat.beat_track(onset_envelope=onset_env, sr=sr)
|
| 28 |
+
speech_rate = tempo / 60 # Speech rate estimation (syllables per second)
|
| 29 |
+
|
| 30 |
+
return f0, energy, speech_rate, mfccs, y, sr
|
| 31 |
|
| 32 |
def analyze_voice_stress(audio_file):
|
| 33 |
if not audio_file:
|
| 34 |
+
return "No audio file provided.", None, None
|
| 35 |
|
| 36 |
try:
|
| 37 |
+
f0, energy, speech_rate, mfccs, y, sr = extract_audio_features(audio_file)
|
| 38 |
+
|
| 39 |
+
# Calculate statistical measures
|
| 40 |
+
mean_f0 = np.mean(f0)
|
| 41 |
+
std_f0 = np.std(f0)
|
| 42 |
+
mean_energy = np.mean(energy)
|
| 43 |
+
std_energy = np.std(energy)
|
| 44 |
+
|
| 45 |
+
# Normative data (example values from medical literature)
|
| 46 |
+
norm_mean_f0_male = 110
|
| 47 |
+
norm_mean_f0_female = 220
|
| 48 |
+
norm_std_f0 = 20
|
| 49 |
+
norm_mean_energy = 0.02
|
| 50 |
+
norm_std_energy = 0.005
|
| 51 |
+
norm_speech_rate = 4.4
|
| 52 |
+
norm_std_speech_rate = 0.5
|
| 53 |
+
|
| 54 |
+
# Gender detection
|
| 55 |
+
gender = 'male' if mean_f0 < 165 else 'female'
|
| 56 |
+
norm_mean_f0 = norm_mean_f0_male if gender == 'male' else norm_mean_f0_female
|
| 57 |
+
|
| 58 |
+
# Compute Z-scores
|
| 59 |
+
z_f0 = (mean_f0 - norm_mean_f0) / norm_std_f0
|
| 60 |
+
z_energy = (mean_energy - norm_mean_energy) / norm_std_energy
|
| 61 |
+
z_speech_rate = (speech_rate - norm_speech_rate) / norm_std_speech_rate
|
| 62 |
+
|
| 63 |
+
# Combine Z-scores for stress level
|
| 64 |
+
stress_score = (0.4 * z_f0) + (0.4 * z_speech_rate) + (0.2 * z_energy)
|
| 65 |
+
stress_level = float(1 / (1 + np.exp(-stress_score)) * 100) # Sigmoid function
|
| 66 |
+
|
| 67 |
+
if stress_level < 20:
|
| 68 |
+
stress_category = "Very Low Stress"
|
| 69 |
+
elif stress_level < 40:
|
| 70 |
+
stress_category = "Low Stress"
|
| 71 |
+
elif stress_level < 60:
|
| 72 |
+
stress_category = "Moderate Stress"
|
| 73 |
+
elif stress_level < 80:
|
| 74 |
+
stress_category = "High Stress"
|
| 75 |
+
else:
|
| 76 |
+
stress_category = "Very High Stress"
|
| 77 |
+
|
| 78 |
+
# More verbose interpretations for each stress category
|
| 79 |
+
interpretations = {
|
| 80 |
+
"Very Low Stress": (
|
| 81 |
+
"Your vocal analysis indicates a very relaxed state. "
|
| 82 |
+
"This suggests that you're currently experiencing minimal stress. "
|
| 83 |
+
"Maintaining such low stress levels is beneficial for your health. "
|
| 84 |
+
"Continue engaging in activities that promote relaxation and well-being. "
|
| 85 |
+
"Regular self-care practices can help sustain this positive state."
|
| 86 |
+
),
|
| 87 |
+
"Low Stress": (
|
| 88 |
+
"Minor signs of stress are detected in your voice. "
|
| 89 |
+
"This is common due to everyday challenges and is usually not concerning. "
|
| 90 |
+
"Incorporating relaxation techniques, like deep breathing or meditation, may help. "
|
| 91 |
+
"Regular breaks and leisure activities can also reduce stress. "
|
| 92 |
+
"Staying mindful of stress levels supports overall health."
|
| 93 |
+
),
|
| 94 |
+
"Moderate Stress": (
|
| 95 |
+
"Your voice reflects moderate stress levels. "
|
| 96 |
+
"This could be due to ongoing pressures or challenges you're facing. "
|
| 97 |
+
"Consider practicing stress management strategies such as mindfulness exercises or physical activity. "
|
| 98 |
+
"Identifying stressors and addressing them can be beneficial. "
|
| 99 |
+
"Balancing work and rest is important for your well-being."
|
| 100 |
+
),
|
| 101 |
+
"High Stress": (
|
| 102 |
+
"Elevated stress levels are apparent in your vocal patterns. "
|
| 103 |
+
"It's important to recognize and address these feelings. "
|
| 104 |
+
"Identifying stressors and seeking support from friends, family, or professionals could be helpful. "
|
| 105 |
+
"Engaging in stress reduction techniques is recommended. "
|
| 106 |
+
"Taking proactive steps can improve your mental and physical health."
|
| 107 |
+
),
|
| 108 |
+
"Very High Stress": (
|
| 109 |
+
"Your voice suggests very high stress levels. "
|
| 110 |
+
"This may indicate significant strain or anxiety. "
|
| 111 |
+
"It may be helpful to consult a healthcare professional for support. "
|
| 112 |
+
"Promptly addressing stress is important for your well-being. "
|
| 113 |
+
"Consider reaching out to trusted individuals or resources."
|
| 114 |
+
)
|
| 115 |
+
}
|
| 116 |
+
|
| 117 |
+
final_interpretation = interpretations[stress_category]
|
| 118 |
|
| 119 |
# Plotting
|
| 120 |
+
fig, axs = plt.subplots(5, 1, figsize=(10, 15))
|
| 121 |
+
|
| 122 |
+
# Plot Fundamental Frequency (Pitch)
|
| 123 |
+
axs[0].plot(f0)
|
| 124 |
+
axs[0].set_title('Fundamental Frequency (Pitch)')
|
| 125 |
+
axs[0].set_ylabel('Frequency (Hz)')
|
| 126 |
+
|
| 127 |
+
# Plot Energy (Loudness)
|
| 128 |
+
axs[1].plot(energy)
|
| 129 |
+
axs[1].set_title('Energy (Loudness)')
|
| 130 |
+
axs[1].set_ylabel('Energy')
|
| 131 |
+
|
| 132 |
+
# Plot MFCCs
|
| 133 |
+
img = librosa.display.specshow(mfccs, sr=sr, x_axis='time', ax=axs[2])
|
| 134 |
+
axs[2].set_title('MFCCs (Mel-frequency cepstral coefficients)')
|
| 135 |
+
fig.colorbar(img, ax=axs[2])
|
| 136 |
+
|
| 137 |
+
# Plot Waveform
|
| 138 |
+
librosa.display.waveshow(y, sr=sr, ax=axs[3])
|
| 139 |
+
axs[3].set_title('Waveform')
|
| 140 |
+
axs[3].set_xlabel('Time (s)')
|
| 141 |
+
axs[3].set_ylabel('Amplitude')
|
| 142 |
+
|
| 143 |
+
# Plot Pitch Contour (Histogram of f0)
|
| 144 |
+
axs[4].hist(f0, bins=50, color='blue', alpha=0.7)
|
| 145 |
+
axs[4].set_title('Pitch Contour (Histogram of f0)')
|
| 146 |
+
axs[4].set_xlabel('Frequency (Hz)')
|
| 147 |
+
axs[4].set_ylabel('Count')
|
| 148 |
|
| 149 |
plt.tight_layout()
|
| 150 |
with tempfile.NamedTemporaryFile(delete=False, suffix='.png') as temp_file:
|
|
|
|
| 152 |
plot_path = temp_file.name
|
| 153 |
plt.close()
|
| 154 |
|
| 155 |
+
# Return separate values for Gradio output components
|
| 156 |
+
return f"{stress_level:.2f}% - {stress_category}", final_interpretation, plot_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 157 |
|
|
|
|
| 158 |
except Exception as e:
|
| 159 |
+
return f"Error: {str(e)}", None, None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 160 |
|
|
|
|
|
|
|
|
|
|
| 161 |
|
| 162 |
+
def create_voice_stress_tab():
|
| 163 |
+
custom_css = """
|
| 164 |
+
/* General container styling for mobile */
|
| 165 |
+
.gradio-container {
|
| 166 |
+
padding: 10px !important;
|
| 167 |
+
font-size: 16px !important;
|
| 168 |
+
}
|
| 169 |
+
|
| 170 |
+
/* Headings */
|
| 171 |
+
h3 {
|
| 172 |
+
text-align: center;
|
| 173 |
+
font-size: 1.5em !important;
|
| 174 |
+
margin-bottom: 20px !important;
|
| 175 |
+
}
|
| 176 |
+
|
| 177 |
+
/* Full width for audio input and other components */
|
| 178 |
+
.gradio-container .gradio-row, .gradio-container .gradio-column {
|
| 179 |
+
flex-direction: column !important;
|
| 180 |
+
align-items: center !important;
|
| 181 |
+
}
|
| 182 |
+
|
| 183 |
+
/* Make the components scale better on smaller screens */
|
| 184 |
+
#input_audio, #stress_output, #interpretation_output, #plot_output {
|
| 185 |
+
width: 100% !important;
|
| 186 |
+
max-width: 100% !important;
|
| 187 |
+
}
|
| 188 |
+
|
| 189 |
+
#input_audio label, #stress_output label, #interpretation_output label, #plot_output label {
|
| 190 |
+
font-size: 1.2em !important;
|
| 191 |
+
}
|
| 192 |
+
|
| 193 |
+
/* Textbox area adjustment */
|
| 194 |
+
#interpretation_output textarea {
|
| 195 |
+
font-size: 1em !important;
|
| 196 |
+
line-height: 1.4 !important;
|
| 197 |
+
}
|
| 198 |
+
|
| 199 |
+
/* Responsive styling for images */
|
| 200 |
+
#plot_output img {
|
| 201 |
+
width: 100% !important;
|
| 202 |
+
height: auto !important;
|
| 203 |
+
}
|
| 204 |
+
|
| 205 |
+
/* Adjust clear button */
|
| 206 |
+
#clear_btn button {
|
| 207 |
+
font-size: 1em !important;
|
| 208 |
+
padding: 10px 20px !important;
|
| 209 |
+
}
|
| 210 |
+
|
| 211 |
+
/* Responsive adjustments */
|
| 212 |
+
@media only screen and (max-width: 600px) {
|
| 213 |
+
.gradio-container {
|
| 214 |
+
padding: 5px !important;
|
| 215 |
+
font-size: 14px !important;
|
| 216 |
+
}
|
| 217 |
+
h3 {
|
| 218 |
+
font-size: 1.2em !important;
|
| 219 |
+
}
|
| 220 |
+
#clear_btn button {
|
| 221 |
+
font-size: 0.9em !important;
|
| 222 |
+
}
|
| 223 |
+
#interpretation_output textarea {
|
| 224 |
+
font-size: 0.9em !important;
|
| 225 |
+
}
|
| 226 |
+
}
|
| 227 |
+
"""
|
| 228 |
+
|
| 229 |
+
with gr.Blocks(css=custom_css) as voice_stress_tab:
|
| 230 |
+
gr.Markdown("<h3>Speech Stress Analysis</h3>")
|
| 231 |
+
with gr.Column():
|
| 232 |
+
input_audio = gr.Audio(label="Upload your voice recording", type="filepath", elem_id="input_audio")
|
| 233 |
+
stress_output = gr.Label(label="Stress Interpretation", elem_id="stress_output")
|
| 234 |
+
interpretation_output = gr.Textbox(label="Detailed Interpretation", lines=6, elem_id="interpretation_output")
|
| 235 |
+
plot_output = gr.Image(label="Stress Analysis Plot", elem_id="plot_output")
|
| 236 |
+
|
| 237 |
+
input_audio.change(
|
| 238 |
+
analyze_voice_stress,
|
| 239 |
+
inputs=[input_audio],
|
| 240 |
+
outputs=[stress_output, interpretation_output, plot_output]
|
| 241 |
+
)
|
| 242 |
+
|
| 243 |
+
gr.Button("Clear", elem_id="clear_btn").click(
|
| 244 |
+
lambda: (None, None, None),
|
| 245 |
+
outputs=[input_audio, stress_output, interpretation_output, plot_output]
|
| 246 |
+
)
|
| 247 |
+
|
| 248 |
+
return voice_stress_tab
|
verify.py
DELETED
|
@@ -1,3 +0,0 @@
|
|
| 1 |
-
import torch
|
| 2 |
-
print(torch.backends.mps.is_available()) # Should return True
|
| 3 |
-
print(torch.backends.mps.is_built()) # Should return True
|
|
|
|
|
|
|
|
|
|
|
|