Spaces:
Sleeping
Sleeping
Commit
·
74ee391
1
Parent(s):
c8fe47c
Add application file
Browse files
app.py
ADDED
|
@@ -0,0 +1,68 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from transformers import pipeline
|
| 3 |
+
import librosa
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import torch
|
| 7 |
+
import spaces
|
| 8 |
+
|
| 9 |
+
# Check for GPU availability
|
| 10 |
+
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 11 |
+
|
| 12 |
+
# Load Whisper model using transformers pipeline
|
| 13 |
+
transcriber = pipeline("automatic-speech-recognition", model="openai/whisper-base.en", device=0 if device == "cuda" else -1)
|
| 14 |
+
|
| 15 |
+
@spaces.GPU
|
| 16 |
+
def analyze_audio(audio):
|
| 17 |
+
# Convert audio to text using Whisper
|
| 18 |
+
transcription_result = transcriber(audio)
|
| 19 |
+
transcription = transcription_result["text"]
|
| 20 |
+
|
| 21 |
+
# Load audio file
|
| 22 |
+
y, sr = librosa.load(audio, sr=None)
|
| 23 |
+
|
| 24 |
+
# Extract prosodic features
|
| 25 |
+
pitch = librosa.yin(y, fmin=librosa.note_to_hz('C2'), fmax=librosa.note_to_hz('C7'))
|
| 26 |
+
tempo, _ = librosa.beat.beat_track(y=y, sr=sr)
|
| 27 |
+
|
| 28 |
+
# Calculate pitch variance
|
| 29 |
+
pitch_variance = np.var(pitch)
|
| 30 |
+
|
| 31 |
+
# Estimate speaking pace (syllables per second)
|
| 32 |
+
num_syllables = len(transcription.split())
|
| 33 |
+
duration = librosa.get_duration(y=y, sr=sr)
|
| 34 |
+
pace = num_syllables / duration
|
| 35 |
+
|
| 36 |
+
# Plot pitch
|
| 37 |
+
plt.figure(figsize=(10, 4))
|
| 38 |
+
plt.plot(pitch, label='Pitch')
|
| 39 |
+
plt.xlabel('Time')
|
| 40 |
+
plt.ylabel('Frequency (Hz)')
|
| 41 |
+
plt.title('Pitch Over Time')
|
| 42 |
+
plt.legend()
|
| 43 |
+
pitch_plot_path = '/tmp/pitch_contour.png'
|
| 44 |
+
plt.savefig(pitch_plot_path)
|
| 45 |
+
plt.close()
|
| 46 |
+
|
| 47 |
+
# Voice Stress Analysis (simplified example)
|
| 48 |
+
stress_level = np.std(pitch)
|
| 49 |
+
|
| 50 |
+
return transcription, tempo, pace, pitch_variance, pitch_plot_path
|
| 51 |
+
|
| 52 |
+
# Create Gradio interface
|
| 53 |
+
input_audio = gr.Audio(label="Input Audio", type="filepath")
|
| 54 |
+
|
| 55 |
+
iface = gr.Interface(
|
| 56 |
+
fn=analyze_audio,
|
| 57 |
+
inputs=input_audio,
|
| 58 |
+
outputs=[
|
| 59 |
+
gr.Textbox(label="Transcription"),
|
| 60 |
+
gr.Number(label="Tempo (BPM)"),
|
| 61 |
+
gr.Number(label="Speaking Pace (syllables/sec)"),
|
| 62 |
+
gr.Number(label="Pitch Variance"),
|
| 63 |
+
gr.Image(label="Pitch Contour Plot")
|
| 64 |
+
],
|
| 65 |
+
live=True
|
| 66 |
+
)
|
| 67 |
+
|
| 68 |
+
iface.launch(share=False)
|