File size: 11,705 Bytes
5e8f045
 
 
4a43fed
 
 
 
 
 
 
5e8f045
 
 
4a43fed
 
 
 
 
 
 
 
5e8f045
 
4a43fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e8f045
 
4a43fed
5e8f045
4a43fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5e8f045
 
4a43fed
 
 
 
 
 
 
 
 
 
 
 
5e8f045
4a43fed
 
 
 
 
5e8f045
4a43fed
 
 
 
 
5e8f045
4a43fed
 
5e8f045
cd13f52
4a43fed
cd13f52
4a43fed
cd13f52
4a43fed
cd13f52
 
 
 
 
 
4a43fed
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
"""
๋ฆฌ๋”๋ณด๋“œ ๊ด€๋ฆฌ ๋ชจ๋“ˆ
๋ฆฌ๋”๋ณด๋“œ ๋ฐ์ดํ„ฐ์˜ ๋กœ๋“œ, ์ €์žฅ, ํ‘œ์‹œ ์ค€๋น„๋ฅผ ๋‹ด๋‹นํ•ฉ๋‹ˆ๋‹ค.

- ๋กœ์ปฌ CSV: ํ”„๋กœ์ ํŠธ ๋ฃจํŠธ์˜ data/leaderboard_results.csv
- ์„ ํƒ์  HF ์—ฐ๋™:
    - repo_id: Config.FRESHQA_DATA_REPO_ID
    - token  : Config.HF_TOKEN
    - ํŒŒ์ผ๋ช… : leaderboard_results.csv (repo ๋ฃจํŠธ)
- Config.UPLOAD_LEADERBOARD_TO_HF == True ์ผ ๋•Œ๋งŒ HF๋ฅผ ์ฝ๊ณ /์“ด๋‹ค.
"""

import os
import time
import tempfile
from typing import Optional

import pandas as pd
from huggingface_hub import HfApi, hf_hub_download

from config import Config
from src.utils import file_lock


# -------------------------
# ์ƒ์ˆ˜ ๋ฐ ์„ค์ •
# -------------------------

HF_LEADERBOARD_FILENAME = "leaderboard_results.csv"          # HF dataset ๋‚ด ํŒŒ์ผ๋ช… (๋ฃจํŠธ)
LOCAL_LEADERBOARD_FILENAME = "leaderboard_results.csv"      # ๋กœ์ปฌ data ํด๋” ๋‚ด ํŒŒ์ผ๋ช… (๊ธฐ์กด ์œ ์ง€)

HF_REPO_ID = Config.FRESHQA_DATA_REPO_ID
HF_ADMIN_TOKEN = Config.HF_TOKEN
UPLOAD_LEADERBOARD_TO_HF = Config.UPLOAD_LEADERBOARD_TO_HF

hf_api = HfApi()


# -------------------------
# ๊ฒฝ๋กœ/์ดˆ๊ธฐ ์Šคํ‚ค๋งˆ/์ •๊ทœํ™” ํ—ฌํผ
# -------------------------

def _get_local_leaderboard_path() -> str:
    """ํ”„๋กœ์ ํŠธ ๋ฃจํŠธ ๊ธฐ์ค€ ๋กœ์ปฌ ๋ฆฌ๋”๋ณด๋“œ CSV ๊ฒฝ๋กœ ๋ฐ˜ํ™˜."""
    current_dir = os.path.dirname(os.path.abspath(__file__))  # src/ ํด๋”
    project_root = os.path.dirname(current_dir)               # ํ”„๋กœ์ ํŠธ ๋ฃจํŠธ
    return os.path.join(project_root, "data", LOCAL_LEADERBOARD_FILENAME)


def _init_empty_leaderboard_df() -> pd.DataFrame:
    """์ดˆ๊ธฐ ๋นˆ ๋ฆฌ๋”๋ณด๋“œ ์Šคํ‚ค๋งˆ DataFrame."""
    return pd.DataFrame({
        "id": [],
        "model": [],
        "description": [],
        "accuracy": [],
        "fast_changing_accuracy": [],
        "slow_changing_accuracy": [],
        "never_changing_accuracy": [],
        "acc_vp": [],
        "acc_fp": [],
        "acc_vp_one_hop": [],
        "acc_vp_two_hop": [],
        "acc_fp_one_hop": [],
        "acc_fp_two_hop": [],
        "acc_vp_old": [],
        "acc_vp_new": [],
        "acc_fp_old": [],
        "acc_fp_new": [],
        "acc_politics": [],
        "acc_sports": [],
        "acc_entertainment": [],
        "acc_weather": [],
        "acc_world": [],
        "acc_economy": [],
        "acc_society": [],
        "acc_it_science": [],
        "acc_life_culture": [],
        "acc_unknown": [],
        "total_questions": [],
        "evaluation_date": [],
        "evaluation_mode": [],
    })


def _normalize_leaderboard_df(df: pd.DataFrame) -> pd.DataFrame:
    """
    ๋ฆฌ๋”๋ณด๋“œ DF๋ฅผ ์Šคํ‚ค๋งˆ/์ •๋ ฌ/์ปฌ๋Ÿผ ์ˆœ์„œ ๊ธฐ์ค€์— ๋งž์ถฐ ์ •๊ทœํ™”ํ•œ๋‹ค.
    (๊ธฐ์กด load_leaderboard_data์˜ ๋กœ์ง์„ ํ•จ์ˆ˜๋กœ ๋ถ„๋ฆฌ)
    """
    if df is None or df.empty:
        return _init_empty_leaderboard_df()

    df = df.copy()

    # evaluation_mode๊ฐ€ ์—†์œผ๋ฉด ์ถ”๊ฐ€
    if "evaluation_mode" not in df.columns:
        df["evaluation_mode"] = "Unknown"

    # ํ…์ŠคํŠธ ์ปฌ๋Ÿผ ๋ณด์ •
    text_columns = ["model", "description"]
    for col in text_columns:
        if col not in df.columns:
            df[col] = pd.Series(dtype="object")

    # ์ƒ์„ธ ๋ถ„์„ ์ปฌ๋Ÿผ ์—†์œผ๋ฉด ์ถ”๊ฐ€
    detailed_columns = [
        "acc_test", "acc_dev", "acc_vp", "acc_fp", "acc_vp_one_hop", "acc_vp_two_hop",
        "acc_fp_one_hop", "acc_fp_two_hop", "acc_vp_old", "acc_vp_new", "acc_fp_old", "acc_fp_new",
    ]
    for col in detailed_columns:
        if col not in df.columns:
            df[col] = 0.0

    # ๋„๋ฉ”์ธ๋ณ„ ์ •ํ™•๋„ ์ปฌ๋Ÿผ ์—†์œผ๋ฉด ์ถ”๊ฐ€
    domain_columns = [
        "acc_politics", "acc_sports", "acc_entertainment",
        "acc_weather", "acc_world", "acc_economy",
        "acc_society", "acc_it_science", "acc_life_culture", "acc_unknown",
    ]
    for col in domain_columns:
        if col not in df.columns:
            df[col] = 0.0

    # accuracy ๊ธฐ์ค€ ์ •๋ ฌ
    if "accuracy" in df.columns and not df.empty:
        df = df.sort_values("accuracy", ascending=False).reset_index(drop=True)

    # ์ปฌ๋Ÿผ ์ˆœ์„œ ์ •๋ ฌ (rank ์ œ์™ธ)
    column_order = [
        "id", "model", "description", "accuracy", "fast_changing_accuracy",
        "slow_changing_accuracy", "never_changing_accuracy", "acc_vp", "acc_fp",
        "acc_vp_one_hop", "acc_vp_two_hop", "acc_fp_one_hop", "acc_fp_two_hop",
        "acc_vp_old", "acc_vp_new", "acc_fp_old", "acc_fp_new",
        "acc_politics", "acc_sports", "acc_entertainment", "acc_weather",
        "acc_world", "acc_economy", "acc_society", "acc_it_science",
        "acc_life_culture", "acc_unknown", "total_questions",
        "evaluation_date", "evaluation_mode",
    ]
    available_columns = [col for col in column_order if col in df.columns]
    df = df[available_columns]

    return df


def _load_local_leaderboard_df() -> pd.DataFrame:
    """๋กœ์ปฌ CSV์—์„œ ๋ฆฌ๋”๋ณด๋“œ ๋กœ๋“œ (์—†์œผ๋ฉด ๋นˆ ์Šคํ‚ค๋งˆ)."""
    data_path = _get_local_leaderboard_path()
    try:
        df = pd.read_csv(data_path)
        return _normalize_leaderboard_df(df)
    except FileNotFoundError:
        return _init_empty_leaderboard_df()
    except Exception as e:
        print(f"โš ๏ธ ๋กœ์ปฌ ๋ฆฌ๋”๋ณด๋“œ ๋กœ๋“œ ์‹คํŒจ: {e}")
        return _init_empty_leaderboard_df()


# -------------------------
# HF ์—ฐ๋™ ํ—ฌํผ
# -------------------------

def _can_use_hf() -> bool:
    """HF ์—ฐ๋™์ด ๊ฐ€๋Šฅํ•œ ์ƒํƒœ์ธ์ง€ ์—ฌ๋ถ€ (Config ๊ธฐ๋ฐ˜)."""
    if not UPLOAD_LEADERBOARD_TO_HF:
        return False
    if not HF_REPO_ID or not HF_ADMIN_TOKEN:
        # ์„ค์ •์ด ์—†์œผ๋ฉด HF๋Š” ๊ฑด๋„ˆ๋œ€
        return False
    return True


def _load_leaderboard_from_hf(retries: int = 3, delay: float = 1.0) -> Optional[pd.DataFrame]:
    """
    HF dataset์—์„œ ๋ฆฌ๋”๋ณด๋“œ CSV๋ฅผ ๋‹ค์šด๋กœ๋“œํ•˜์—ฌ DataFrame์œผ๋กœ ๋ฐ˜ํ™˜.
    ์‹คํŒจ ์‹œ None ๋ฐ˜ํ™˜. ์žฌ์‹œ๋„ ๋กœ์ง ํฌํ•จ.
    """
    if not _can_use_hf():
        return None

    last_err: Optional[Exception] = None
    for attempt in range(1, retries + 1):
        try:
            with tempfile.TemporaryDirectory() as tmpdir:
                file_path = hf_hub_download(
                    repo_id=HF_REPO_ID,
                    filename=HF_LEADERBOARD_FILENAME,
                    repo_type="dataset",
                    local_dir=tmpdir,
                    token=HF_ADMIN_TOKEN,
                )
                df = pd.read_csv(file_path)
                return _normalize_leaderboard_df(df)
        except Exception as e:
            last_err = e
            print(f"โš ๏ธ HF ๋ฆฌ๋”๋ณด๋“œ ๋กœ๋“œ ์‹คํŒจ (์‹œ๋„ {attempt}/{retries}): {e}")
            if attempt < retries:
                time.sleep(delay)
                delay *= 2
    print("โŒ HF ๋ฆฌ๋”๋ณด๋“œ ๋กœ๋“œ ์žฌ์‹œ๋„ ๋ชจ๋‘ ์‹คํŒจ")
    return None


def _save_leaderboard_to_hf(df: pd.DataFrame, retries: int = 3, delay: float = 1.0) -> bool:
    """
    HF dataset์— ๋ฆฌ๋”๋ณด๋“œ CSV ์—…๋กœ๋“œ.
    ์‹คํŒจ ์‹œ False ๋ฐ˜ํ™˜. ์žฌ์‹œ๋„ ๋กœ์ง ํฌํ•จ.
    """
    if not _can_use_hf():
        return False

    df = _normalize_leaderboard_df(df)

    last_err: Optional[Exception] = None
    for attempt in range(1, retries + 1):
        try:
            with tempfile.NamedTemporaryFile(
                mode="w",
                encoding="utf-8",
                suffix=".csv",
                delete=False,
            ) as tmpfile:
                df.to_csv(tmpfile.name, index=False)
                tmp_path = tmpfile.name

            hf_api.upload_file(
                path_or_fileobj=tmp_path,
                path_in_repo=HF_LEADERBOARD_FILENAME,
                repo_id=HF_REPO_ID,
                repo_type="dataset",
                token=HF_ADMIN_TOKEN,
                commit_message="Update leaderboard results",
            )

            os.unlink(tmp_path)
            return True

        except Exception as e:
            last_err = e
            print(f"โš ๏ธ HF ๋ฆฌ๋”๋ณด๋“œ ์—…๋กœ๋“œ ์‹คํŒจ (์‹œ๋„ {attempt}/{retries}): {e}")
            if attempt < retries:
                time.sleep(delay)
                delay *= 2

    print(f"โŒ HF ๋ฆฌ๋”๋ณด๋“œ ์—…๋กœ๋“œ ์žฌ์‹œ๋„ ๋ชจ๋‘ ์‹คํŒจ: {last_err}")
    return False


# -------------------------
# ๊ณต๊ฐœ API: ๋กœ๋“œ / ์ถ”๊ฐ€
# -------------------------

def load_leaderboard_data() -> pd.DataFrame:
    """
    ๋ฆฌ๋”๋ณด๋“œ ๋ฐ์ดํ„ฐ ๋กœ๋“œ.

    ๋™์ž‘ ์šฐ์„ ์ˆœ์œ„:
    1) Config.UPLOAD_LEADERBOARD_TO_HF == True && HF ์„ค์ • OK:
        - HF์—์„œ ์ตœ์‹  ๋ฆฌ๋”๋ณด๋“œ ๋กœ๋“œ ์‹œ๋„
        - ์„ฑ๊ณต ์‹œ: ๊ทธ ๋‚ด์šฉ์„ ๋กœ์ปฌ CSV์— ๋ฎ์–ด์“ด ๋’ค ๋ฐ˜ํ™˜
        - ์‹คํŒจ ์‹œ: ๋กœ์ปฌ CSV๋ฅผ ์‚ฌ์šฉ (์—†์œผ๋ฉด ๋นˆ ์Šคํ‚ค๋งˆ)
    2) ๊ทธ ์™ธ:
        - ๋กœ์ปฌ CSV๋งŒ ์‚ฌ์šฉ (์—†์œผ๋ฉด ๋นˆ ์Šคํ‚ค๋งˆ)
    """
    data_path = _get_local_leaderboard_path()
    lock_path = data_path + ".lock"

    # HF๋ฅผ ์‚ฌ์šฉํ•  ์ˆ˜ ์žˆ๋Š” ๊ฒฝ์šฐ์—๋งŒ HF ์šฐ์„  ์‹œ๋„
    if _can_use_hf():
        with file_lock(lock_path):
            hf_df = _load_leaderboard_from_hf()
            if hf_df is not None:
                # HF๊ฐ€ ์†Œ์Šค ์˜ค๋ธŒ ํŠธ๋ฃจ์Šค: ๋กœ์ปฌ CSV๋„ HF ๊ธฐ์ค€์œผ๋กœ ๋™๊ธฐํ™”
                try:
                    os.makedirs(os.path.dirname(data_path), exist_ok=True)
                    hf_df.to_csv(data_path, index=False)
                except Exception as e:
                    print(f"โš ๏ธ ๋กœ์ปฌ ๋ฆฌ๋”๋ณด๋“œ ๋™๊ธฐํ™” ์‹คํŒจ: {e}")
                return hf_df

            # HF์—์„œ ๋ชป ๊ฐ€์ ธ์˜ค๋ฉด ๋กœ์ปฌ๋กœ ํด๋ฐฑ
            local_df = _load_local_leaderboard_df()
            return local_df

    # HF๋ฅผ ์‚ฌ์šฉํ•˜์ง€ ์•Š๋Š” ๊ฒฝ์šฐ: ๋กœ์ปฌ๋งŒ
    return _load_local_leaderboard_df()


def append_to_leaderboard_data(new_data_list):
    """
    ๋ฆฌ๋”๋ณด๋“œ ๋ฐ์ดํ„ฐ์— ์ƒˆ๋กœ์šด ๊ฒฐ๊ณผ ์ถ”๊ฐ€ (ํŒŒ์ผ ์ž ๊ธˆ ์‚ฌ์šฉ).

    - ํ•ญ์ƒ ๋กœ์ปฌ CSV๋ฅผ ์—…๋ฐ์ดํŠธ
    - Config.UPLOAD_LEADERBOARD_TO_HF == True ์ด๊ณ  HF ์„ค์ •์ด ์œ ํšจํ•˜๋ฉด,
      ์—…๋ฐ์ดํŠธ๋œ ์ „์ฒด DF๋ฅผ HF์—๋„ ์—…๋กœ๋“œ (์žฌ์‹œ๋„ ํฌํ•จ).
    """
    data_path = _get_local_leaderboard_path()
    lock_path = data_path + ".lock"

    with file_lock(lock_path):
        # 1) ๋กœ์ปฌ ๊ธฐ์กด ๋ฐ์ดํ„ฐ ๋กœ๋“œ
        if os.path.exists(data_path):
            try:
                existing_df = pd.read_csv(data_path)
            except Exception as e:
                print(f"โš ๏ธ ๋กœ์ปฌ ๋ฆฌ๋”๋ณด๋“œ ์ฝ๊ธฐ ์‹คํŒจ, ๋นˆ ์Šคํ‚ค๋งˆ๋กœ ์ง„ํ–‰: {e}")
                existing_df = _init_empty_leaderboard_df()
        else:
            existing_df = _init_empty_leaderboard_df()

        existing_df = _normalize_leaderboard_df(existing_df)

        # 2) ์ƒˆ๋กœ์šด ๋ฐ์ดํ„ฐ ์ถ”๊ฐ€
        new_df = pd.DataFrame(new_data_list)
        if not new_df.empty:
            new_df = _normalize_leaderboard_df(new_df)

        frames_to_concat = []
        if not existing_df.empty:
            frames_to_concat.append(existing_df)
        if not new_df.empty:
            frames_to_concat.append(new_df)

        if len(frames_to_concat) == 0:
            combined_df = existing_df.copy()
        elif len(frames_to_concat) == 1:
            combined_df = frames_to_concat[0].copy()
        else:
            combined_df = pd.concat(frames_to_concat, ignore_index=True)

        combined_df = _normalize_leaderboard_df(combined_df)

        # 3) ๋กœ์ปฌ ์ €์žฅ
        try:
            os.makedirs(os.path.dirname(data_path), exist_ok=True)
            combined_df.to_csv(data_path, index=False)
        except Exception as e:
            print(f"โŒ ๋กœ์ปฌ ๋ฆฌ๋”๋ณด๋“œ ์ €์žฅ ์‹คํŒจ: {e}")

        # 4) HF์—๋„ ์—…๋กœ๋“œ (์˜ต์…˜)
        if _can_use_hf():
            ok = _save_leaderboard_to_hf(combined_df)
            if not ok:
                print("โš ๏ธ ๋ฆฌ๋”๋ณด๋“œ HF ์—…๋กœ๋“œ ์‹คํŒจ (๋กœ์ปฌ์—๋Š” ์ €์žฅ๋จ)")

        return combined_df