Commit
·
3ff2783
1
Parent(s):
8263cff
kanpeki
Browse files- app_wsl copy.py +0 -669
- app_wsl.py +4 -39
- run_parakeet.bat +37 -23
app_wsl copy.py
DELETED
|
@@ -1,669 +0,0 @@
|
|
| 1 |
-
from nemo.collections.asr.models import ASRModel
|
| 2 |
-
import torch
|
| 3 |
-
import gradio as gr
|
| 4 |
-
import spaces
|
| 5 |
-
import gc
|
| 6 |
-
import shutil
|
| 7 |
-
from pathlib import Path
|
| 8 |
-
from pydub import AudioSegment
|
| 9 |
-
import numpy as np
|
| 10 |
-
import os
|
| 11 |
-
import gradio.themes as gr_themes
|
| 12 |
-
import csv
|
| 13 |
-
import json
|
| 14 |
-
from typing import List, Tuple
|
| 15 |
-
|
| 16 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
-
MODEL_NAME="nvidia/parakeet-tdt-0.6b-v2"
|
| 18 |
-
|
| 19 |
-
model = ASRModel.from_pretrained(model_name=MODEL_NAME)
|
| 20 |
-
model.eval()
|
| 21 |
-
|
| 22 |
-
def start_session(request: gr.Request):
|
| 23 |
-
session_hash = request.session_hash
|
| 24 |
-
# プロジェクトディレクトリ内のoutputsフォルダを使用
|
| 25 |
-
base_dir = Path(__file__).parent
|
| 26 |
-
session_dir = base_dir / "outputs" / session_hash
|
| 27 |
-
session_dir.mkdir(parents=True, exist_ok=True)
|
| 28 |
-
print(f"Session with hash {session_hash} started in {session_dir}")
|
| 29 |
-
return session_dir.as_posix()
|
| 30 |
-
|
| 31 |
-
def end_session(request: gr.Request):
|
| 32 |
-
session_hash = request.session_hash
|
| 33 |
-
base_dir = Path(__file__).parent
|
| 34 |
-
session_dir = base_dir / "outputs" / session_hash
|
| 35 |
-
if session_dir.exists():
|
| 36 |
-
print(f"Session directory {session_dir} will be preserved.")
|
| 37 |
-
# 削除しないように変更
|
| 38 |
-
# shutil.rmtree(session_dir)
|
| 39 |
-
print(f"Session with hash {session_hash} ended.")
|
| 40 |
-
|
| 41 |
-
def get_audio_segment(audio_path, start_second, end_second):
|
| 42 |
-
if not audio_path or not Path(audio_path).exists():
|
| 43 |
-
print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.")
|
| 44 |
-
return None
|
| 45 |
-
try:
|
| 46 |
-
start_ms = int(start_second * 1000)
|
| 47 |
-
end_ms = int(end_second * 1000)
|
| 48 |
-
|
| 49 |
-
start_ms = max(0, start_ms)
|
| 50 |
-
if end_ms <= start_ms:
|
| 51 |
-
print(f"Warning: End time ({end_second}s) is not after start time ({start_second}s). Adjusting end time.")
|
| 52 |
-
end_ms = start_ms + 100
|
| 53 |
-
|
| 54 |
-
audio = AudioSegment.from_file(audio_path)
|
| 55 |
-
clipped_audio = audio[start_ms:end_ms]
|
| 56 |
-
|
| 57 |
-
samples = np.array(clipped_audio.get_array_of_samples())
|
| 58 |
-
if clipped_audio.channels == 2:
|
| 59 |
-
samples = samples.reshape((-1, 2)).mean(axis=1).astype(samples.dtype)
|
| 60 |
-
|
| 61 |
-
frame_rate = clipped_audio.frame_rate
|
| 62 |
-
if frame_rate <= 0:
|
| 63 |
-
print(f"Warning: Invalid frame rate ({frame_rate}) detected for clipped audio.")
|
| 64 |
-
frame_rate = audio.frame_rate
|
| 65 |
-
|
| 66 |
-
if samples.size == 0:
|
| 67 |
-
print(f"Warning: Clipped audio resulted in empty samples array ({start_second}s to {end_second}s).")
|
| 68 |
-
return None
|
| 69 |
-
|
| 70 |
-
return (frame_rate, samples)
|
| 71 |
-
except FileNotFoundError:
|
| 72 |
-
print(f"Error: Audio file not found at path: {audio_path}")
|
| 73 |
-
return None
|
| 74 |
-
except Exception as e:
|
| 75 |
-
print(f"Error clipping audio {audio_path} from {start_second}s to {end_second}s: {e}")
|
| 76 |
-
return None
|
| 77 |
-
|
| 78 |
-
def preprocess_audio(audio_path, session_dir):
|
| 79 |
-
"""
|
| 80 |
-
オーディオファイルの前処理(リサンプリング、モノラル変換)を行う。
|
| 81 |
-
|
| 82 |
-
Args:
|
| 83 |
-
audio_path (str): 入力オーディオファイルのパス。
|
| 84 |
-
session_dir (str): セッションディレクトリのパス。
|
| 85 |
-
|
| 86 |
-
Returns:
|
| 87 |
-
tuple: (processed_path, info_path_name, duration_sec) のタプル、または None(処理に失敗した場合)。
|
| 88 |
-
"""
|
| 89 |
-
try:
|
| 90 |
-
original_path_name = Path(audio_path).name
|
| 91 |
-
audio_name = Path(audio_path).stem
|
| 92 |
-
|
| 93 |
-
try:
|
| 94 |
-
gr.Info(f"Loading audio: {original_path_name}", duration=2)
|
| 95 |
-
audio = AudioSegment.from_file(audio_path)
|
| 96 |
-
duration_sec = audio.duration_seconds
|
| 97 |
-
except Exception as load_e:
|
| 98 |
-
gr.Error(f"Failed to load audio file {original_path_name}: {load_e}", duration=None)
|
| 99 |
-
return None, None, None
|
| 100 |
-
|
| 101 |
-
resampled = False
|
| 102 |
-
mono = False
|
| 103 |
-
target_sr = 16000
|
| 104 |
-
|
| 105 |
-
if audio.frame_rate != target_sr:
|
| 106 |
-
try:
|
| 107 |
-
audio = audio.set_frame_rate(target_sr)
|
| 108 |
-
resampled = True
|
| 109 |
-
except Exception as resample_e:
|
| 110 |
-
gr.Error(f"Failed to resample audio: {resample_e}", duration=None)
|
| 111 |
-
return None, None, None
|
| 112 |
-
|
| 113 |
-
if audio.channels == 2:
|
| 114 |
-
try:
|
| 115 |
-
audio = audio.set_channels(1)
|
| 116 |
-
mono = True
|
| 117 |
-
except Exception as mono_e:
|
| 118 |
-
gr.Error(f"Failed to convert audio to mono: {mono_e}", duration=None)
|
| 119 |
-
return None, None, None
|
| 120 |
-
elif audio.channels > 2:
|
| 121 |
-
gr.Error(f"Audio has {audio.channels} channels. Only mono (1) or stereo (2) supported.", duration=None)
|
| 122 |
-
return None, None, None
|
| 123 |
-
|
| 124 |
-
processed_audio_path = None
|
| 125 |
-
if resampled or mono:
|
| 126 |
-
try:
|
| 127 |
-
processed_audio_path = Path(session_dir, f"{audio_name}_resampled.wav")
|
| 128 |
-
audio.export(processed_audio_path, format="wav")
|
| 129 |
-
transcribe_path = processed_audio_path.as_posix()
|
| 130 |
-
info_path_name = f"{original_path_name} (processed)"
|
| 131 |
-
except Exception as export_e:
|
| 132 |
-
gr.Error(f"Failed to export processed audio: {export_e}", duration=None)
|
| 133 |
-
if processed_audio_path and os.path.exists(processed_audio_path):
|
| 134 |
-
os.remove(processed_audio_path)
|
| 135 |
-
return None, None, None
|
| 136 |
-
else:
|
| 137 |
-
transcribe_path = audio_path
|
| 138 |
-
info_path_name = original_path_name
|
| 139 |
-
|
| 140 |
-
return transcribe_path, info_path_name, duration_sec
|
| 141 |
-
except Exception as e:
|
| 142 |
-
gr.Error(f"Audio preprocessing failed: {e}", duration=None)
|
| 143 |
-
return None, None, None
|
| 144 |
-
|
| 145 |
-
def transcribe_audio(transcribe_path, model, duration_sec, device):
|
| 146 |
-
"""
|
| 147 |
-
オーディオファイルを文字起こしし、タイムスタンプを取得する。
|
| 148 |
-
|
| 149 |
-
Args:
|
| 150 |
-
transcribe_path (str): 入力オーディオファイルのパス。
|
| 151 |
-
model (ASRModel): 使用するASRモデル。
|
| 152 |
-
duration_sec (float): オーディオファイルの長さ(秒)。
|
| 153 |
-
device (str): 使用するデバイス('cuda' or 'cpu')。
|
| 154 |
-
|
| 155 |
-
Returns:
|
| 156 |
-
tuple: (vis_data, raw_times_data, word_vis_data) のタプル、または None(処理に失敗した場合)。
|
| 157 |
-
"""
|
| 158 |
-
long_audio_settings_applied = False
|
| 159 |
-
try:
|
| 160 |
-
# CUDA使用前にメモリをクリア
|
| 161 |
-
if device == 'cuda':
|
| 162 |
-
torch.cuda.empty_cache()
|
| 163 |
-
gc.collect()
|
| 164 |
-
|
| 165 |
-
model.to(device)
|
| 166 |
-
model.to(torch.float32)
|
| 167 |
-
gr.Info(f"Transcribing on {device}...", duration=2)
|
| 168 |
-
|
| 169 |
-
if duration_sec > 480:
|
| 170 |
-
try:
|
| 171 |
-
gr.Info("Audio longer than 8 minutes. Applying optimized settings for long transcription.", duration=3)
|
| 172 |
-
print("Applying long audio settings: Local Attention and Chunking.")
|
| 173 |
-
model.change_attention_model("rel_pos_local_attn", [256,256])
|
| 174 |
-
model.change_subsampling_conv_chunking_factor(1)
|
| 175 |
-
# メモリ効率を改善するための設定
|
| 176 |
-
torch.cuda.empty_cache()
|
| 177 |
-
gc.collect()
|
| 178 |
-
long_audio_settings_applied = True
|
| 179 |
-
except Exception as setting_e:
|
| 180 |
-
gr.Warning(f"Could not apply long audio settings: {setting_e}", duration=5)
|
| 181 |
-
print(f"Warning: Failed to apply long audio settings: {setting_e}")
|
| 182 |
-
|
| 183 |
-
# より効率的なメモリ使用のためにbfloat16を使用
|
| 184 |
-
model.to(torch.bfloat16)
|
| 185 |
-
|
| 186 |
-
# メモリ使用状況をログに出力
|
| 187 |
-
if device == 'cuda':
|
| 188 |
-
print(f"CUDA Memory before transcription: {torch.cuda.memory_allocated() / 1024**2:.2f} MB")
|
| 189 |
-
|
| 190 |
-
output = model.transcribe([transcribe_path], timestamps=True)
|
| 191 |
-
|
| 192 |
-
if not output or not isinstance(output, list) or not output[0] or not hasattr(output[0], 'timestamp') or not output[0].timestamp or 'segment' not in output[0].timestamp:
|
| 193 |
-
gr.Error("Transcription failed or produced unexpected output format.", duration=None)
|
| 194 |
-
return None, None, None
|
| 195 |
-
|
| 196 |
-
# 結果を処理する前にメモリを解放
|
| 197 |
-
if device == 'cuda':
|
| 198 |
-
model.cpu()
|
| 199 |
-
torch.cuda.empty_cache()
|
| 200 |
-
gc.collect()
|
| 201 |
-
|
| 202 |
-
segment_timestamps = output[0].timestamp['segment']
|
| 203 |
-
vis_data = [[f"{ts['start']:.2f}", f"{ts['end']:.2f}", ts['segment']] for ts in segment_timestamps]
|
| 204 |
-
raw_times_data = [[ts['start'], ts['end']] for ts in segment_timestamps]
|
| 205 |
-
|
| 206 |
-
word_timestamps_raw = output[0].timestamp.get("word", [])
|
| 207 |
-
word_vis_data = [
|
| 208 |
-
[f"{w['start']:.2f}", f"{w['end']:.2f}", w["word"]]
|
| 209 |
-
for w in word_timestamps_raw if isinstance(w, dict) and 'start' in w and 'end' in w and 'word' in w
|
| 210 |
-
]
|
| 211 |
-
|
| 212 |
-
gr.Info("Transcription complete.", duration=2)
|
| 213 |
-
return vis_data, raw_times_data, word_vis_data
|
| 214 |
-
|
| 215 |
-
except torch.cuda.OutOfMemoryError as e:
|
| 216 |
-
error_msg = 'CUDA out of memory. Please try a shorter audio or reduce GPU load.'
|
| 217 |
-
print(f"CUDA OutOfMemoryError: {e}")
|
| 218 |
-
gr.Error(error_msg, duration=None)
|
| 219 |
-
# メモリエラー時に強制的にクリーンアップ
|
| 220 |
-
if device == 'cuda':
|
| 221 |
-
torch.cuda.empty_cache()
|
| 222 |
-
gc.collect()
|
| 223 |
-
return None, None, None
|
| 224 |
-
|
| 225 |
-
except Exception as e:
|
| 226 |
-
error_msg = f"Transcription failed: {e}"
|
| 227 |
-
print(f"Error during transcription processing: {e}")
|
| 228 |
-
gr.Error(error_msg, duration=None)
|
| 229 |
-
return None, None, None
|
| 230 |
-
|
| 231 |
-
finally:
|
| 232 |
-
try:
|
| 233 |
-
if long_audio_settings_applied:
|
| 234 |
-
try:
|
| 235 |
-
print("Reverting long audio settings.")
|
| 236 |
-
model.change_attention_model("rel_pos")
|
| 237 |
-
model.change_subsampling_conv_chunking_factor(-1)
|
| 238 |
-
except Exception as revert_e:
|
| 239 |
-
print(f"Warning: Failed to revert long audio settings: {revert_e}")
|
| 240 |
-
gr.Warning(f"Issue reverting model settings after long transcription: {revert_e}", duration=5)
|
| 241 |
-
|
| 242 |
-
if device == 'cuda':
|
| 243 |
-
model.cpu()
|
| 244 |
-
torch.cuda.empty_cache()
|
| 245 |
-
gc.collect()
|
| 246 |
-
except Exception as cleanup_e:
|
| 247 |
-
print(f"Error during model cleanup: {cleanup_e}")
|
| 248 |
-
gr.Warning(f"Issue during model cleanup: {cleanup_e}", duration=5)
|
| 249 |
-
|
| 250 |
-
def save_transcripts(session_dir, audio_name, vis_data, word_vis_data):
|
| 251 |
-
"""
|
| 252 |
-
文字起こし結果を各種ファイル形式(CSV、SRT、VTT、JSON、LRC)で保存する。
|
| 253 |
-
|
| 254 |
-
Args:
|
| 255 |
-
session_dir (str): セッションディレクトリのパス。
|
| 256 |
-
audio_name (str): オーディオファイルの名前。
|
| 257 |
-
vis_data (list): 表示用の文字起こし結果のリスト。
|
| 258 |
-
word_vis_data (list): 単語レベルのタイムスタンプのリスト。
|
| 259 |
-
|
| 260 |
-
Returns:
|
| 261 |
-
tuple: 各ファイルのダウンロードボタンの更新情報を含むタプル。
|
| 262 |
-
"""
|
| 263 |
-
try:
|
| 264 |
-
csv_headers = ["Start (s)", "End (s)", "Segment"]
|
| 265 |
-
csv_file_path = Path(session_dir, f"transcription_{audio_name}.csv")
|
| 266 |
-
with open(csv_file_path, 'w', newline='', encoding='utf-8') as f:
|
| 267 |
-
writer = csv.writer(f)
|
| 268 |
-
writer.writerow(csv_headers)
|
| 269 |
-
writer.writerows(vis_data)
|
| 270 |
-
print(f"CSV transcript saved to temporary file: {csv_file_path}")
|
| 271 |
-
|
| 272 |
-
srt_file_path = Path(session_dir, f"transcription_{audio_name}.srt")
|
| 273 |
-
vtt_file_path = Path(session_dir, f"transcription_{audio_name}.vtt")
|
| 274 |
-
json_file_path = Path(session_dir, f"transcription_{audio_name}.json")
|
| 275 |
-
write_srt(vis_data, srt_file_path)
|
| 276 |
-
write_vtt(vis_data, word_vis_data, vtt_file_path)
|
| 277 |
-
write_json(vis_data, word_vis_data, json_file_path)
|
| 278 |
-
print(f"SRT, VTT, JSON transcript saved to temporary files: {srt_file_path}, {vtt_file_path}, {json_file_path}")
|
| 279 |
-
|
| 280 |
-
lrc_file_path = Path(session_dir, f"transcription_{audio_name}.lrc")
|
| 281 |
-
write_lrc(vis_data, lrc_file_path)
|
| 282 |
-
print(f"LRC transcript saved to temporary file: {lrc_file_path}")
|
| 283 |
-
|
| 284 |
-
return (
|
| 285 |
-
gr.DownloadButton(value=csv_file_path.as_posix(), visible=True),
|
| 286 |
-
gr.DownloadButton(value=srt_file_path.as_posix(), visible=True),
|
| 287 |
-
gr.DownloadButton(value=vtt_file_path.as_posix(), visible=True),
|
| 288 |
-
gr.DownloadButton(value=json_file_path.as_posix(), visible=True),
|
| 289 |
-
gr.DownloadButton(value=lrc_file_path.as_posix(), visible=True)
|
| 290 |
-
)
|
| 291 |
-
except Exception as e:
|
| 292 |
-
gr.Error(f"Failed to create transcript files: {e}", duration=None)
|
| 293 |
-
print(f"Error writing transcript files: {e}")
|
| 294 |
-
return tuple([gr.DownloadButton(visible=False)] * 5)
|
| 295 |
-
|
| 296 |
-
def split_audio_with_overlap(audio_path: str, session_dir: str, chunk_length_sec: int = 3600, overlap_sec: int = 30) -> List[str]:
|
| 297 |
-
"""
|
| 298 |
-
音声ファイルをchunk_length_secごとにoverlap_secのオーバーラップ付きで分割し、
|
| 299 |
-
分割ファイルのパスリストを返す。
|
| 300 |
-
"""
|
| 301 |
-
audio = AudioSegment.from_file(audio_path)
|
| 302 |
-
duration = audio.duration_seconds
|
| 303 |
-
chunk_paths = []
|
| 304 |
-
start = 0
|
| 305 |
-
chunk_idx = 0
|
| 306 |
-
while start < duration:
|
| 307 |
-
end = min(start + chunk_length_sec, duration)
|
| 308 |
-
# オーバーラップを考慮
|
| 309 |
-
chunk_start = max(0, start - (overlap_sec if start > 0 else 0))
|
| 310 |
-
chunk_end = min(end + (overlap_sec if end < duration else 0), duration)
|
| 311 |
-
chunk = audio[chunk_start * 1000:chunk_end * 1000]
|
| 312 |
-
chunk_path = Path(session_dir, f"chunk_{chunk_idx:03d}.wav").as_posix()
|
| 313 |
-
chunk.export(chunk_path, format="wav")
|
| 314 |
-
chunk_paths.append(chunk_path)
|
| 315 |
-
start += chunk_length_sec
|
| 316 |
-
chunk_idx += 1
|
| 317 |
-
return chunk_paths
|
| 318 |
-
|
| 319 |
-
@spaces.GPU
|
| 320 |
-
def get_transcripts_and_raw_times(audio_path, session_dir, progress=gr.Progress(track_tqdm=True)):
|
| 321 |
-
"""
|
| 322 |
-
オーディオファイルを処理し、文字起こし結果を生成する。
|
| 323 |
-
3時間を超える場合は60分ごとに分割し、オーバーラップ付きでASRを実行してマージする。
|
| 324 |
-
"""
|
| 325 |
-
if not audio_path:
|
| 326 |
-
gr.Error("No audio file path provided for transcription.", duration=None)
|
| 327 |
-
return [], [], [], None, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)
|
| 328 |
-
|
| 329 |
-
audio_name = Path(audio_path).stem
|
| 330 |
-
processed_audio_path = None
|
| 331 |
-
temp_chunk_paths = []
|
| 332 |
-
|
| 333 |
-
try:
|
| 334 |
-
# オーディオの前処理
|
| 335 |
-
transcribe_path, info_path_name, duration_sec = preprocess_audio(audio_path, session_dir)
|
| 336 |
-
if not transcribe_path or not duration_sec:
|
| 337 |
-
return [], [], [], audio_path, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)
|
| 338 |
-
|
| 339 |
-
processed_audio_path = transcribe_path if transcribe_path != audio_path else None # 3時間超の場合は分割して逐次ASR
|
| 340 |
-
if duration_sec > 10800:
|
| 341 |
-
gr.Info("Audio is longer than 3 hours. Splitting into 1-hour chunks with overlap for transcription.", duration=5)
|
| 342 |
-
chunk_paths = split_audio_with_overlap(transcribe_path, session_dir, chunk_length_sec=3600, overlap_sec=30)
|
| 343 |
-
temp_chunk_paths = chunk_paths.copy()
|
| 344 |
-
all_vis_data = []
|
| 345 |
-
all_raw_times_data = []
|
| 346 |
-
all_word_vis_data = []
|
| 347 |
-
offset = 0.0
|
| 348 |
-
prev_end = 0.0
|
| 349 |
-
for i, chunk_path in enumerate(progress.tqdm(chunk_paths, desc="Processing audio chunks")):
|
| 350 |
-
chunk_audio = AudioSegment.from_file(chunk_path)
|
| 351 |
-
chunk_duration = chunk_audio.duration_seconds
|
| 352 |
-
# ASR実行
|
| 353 |
-
result = transcribe_audio(chunk_path, model, chunk_duration, device)
|
| 354 |
-
if not result:
|
| 355 |
-
continue
|
| 356 |
-
vis_data, raw_times_data, word_vis_data = result
|
| 357 |
-
# タイムスタンプを全体のオフセットに合わせて補正
|
| 358 |
-
vis_data_offset = []
|
| 359 |
-
raw_times_data_offset = []
|
| 360 |
-
word_vis_data_offset = []
|
| 361 |
-
for row in vis_data:
|
| 362 |
-
s, e, seg = float(row[0]), float(row[1]), row[2]
|
| 363 |
-
vis_data_offset.append([f"{s+offset:.2f}", f"{e+offset:.2f}", seg])
|
| 364 |
-
for row in raw_times_data:
|
| 365 |
-
s, e = float(row[0]), float(row[1])
|
| 366 |
-
raw_times_data_offset.append([s+offset, e+offset])
|
| 367 |
-
for row in word_vis_data:
|
| 368 |
-
s, e, w = float(row[0]), float(row[1]), row[2]
|
| 369 |
-
word_vis_data_offset.append([f"{s+offset:.2f}", f"{e+offset:.2f}", w])
|
| 370 |
-
# オーバーラップ部分の重複除去(単純に前回のend以降のみ追加)
|
| 371 |
-
vis_data_offset = [row for row in vis_data_offset if float(row[0]) >= prev_end]
|
| 372 |
-
raw_times_data_offset = [row for row in raw_times_data_offset if row[0] >= prev_end]
|
| 373 |
-
word_vis_data_offset = [row for row in word_vis_data_offset if float(row[0]) >= prev_end]
|
| 374 |
-
if vis_data_offset:
|
| 375 |
-
prev_end = float(vis_data_offset[-1][1])
|
| 376 |
-
all_vis_data.extend(vis_data_offset)
|
| 377 |
-
all_raw_times_data.extend(raw_times_data_offset)
|
| 378 |
-
all_word_vis_data.extend(word_vis_data_offset)
|
| 379 |
-
offset += chunk_duration - (30 if i < len(chunk_paths)-1 else 0)
|
| 380 |
-
# ファイルの保存
|
| 381 |
-
button_updates = save_transcripts(session_dir, audio_name, all_vis_data, all_word_vis_data)
|
| 382 |
-
# 一時分割ファイル削除
|
| 383 |
-
for p in temp_chunk_paths:
|
| 384 |
-
try:
|
| 385 |
-
os.remove(p)
|
| 386 |
-
except Exception:
|
| 387 |
-
pass
|
| 388 |
-
return (
|
| 389 |
-
all_vis_data,
|
| 390 |
-
all_raw_times_data,
|
| 391 |
-
all_word_vis_data,
|
| 392 |
-
audio_path,
|
| 393 |
-
*button_updates
|
| 394 |
-
)
|
| 395 |
-
else:
|
| 396 |
-
# 3時間以内は従来通り
|
| 397 |
-
result = transcribe_audio(transcribe_path, model, duration_sec, device)
|
| 398 |
-
if not result:
|
| 399 |
-
return [], [], [], audio_path, gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False), gr.DownloadButton(visible=False)
|
| 400 |
-
vis_data, raw_times_data, word_vis_data = result
|
| 401 |
-
button_updates = save_transcripts(session_dir, audio_name, vis_data, word_vis_data)
|
| 402 |
-
return (
|
| 403 |
-
vis_data,
|
| 404 |
-
raw_times_data,
|
| 405 |
-
word_vis_data,
|
| 406 |
-
audio_path,
|
| 407 |
-
*button_updates
|
| 408 |
-
)
|
| 409 |
-
finally:
|
| 410 |
-
if processed_audio_path and os.path.exists(processed_audio_path):
|
| 411 |
-
try:
|
| 412 |
-
os.remove(processed_audio_path)
|
| 413 |
-
print(f"Temporary audio file {processed_audio_path} removed.")
|
| 414 |
-
except Exception as e:
|
| 415 |
-
print(f"Error removing temporary audio file {processed_audio_path}: {e}")
|
| 416 |
-
# 分割ファイルの掃除
|
| 417 |
-
for p in temp_chunk_paths:
|
| 418 |
-
if os.path.exists(p):
|
| 419 |
-
try:
|
| 420 |
-
os.remove(p)
|
| 421 |
-
except Exception:
|
| 422 |
-
pass
|
| 423 |
-
|
| 424 |
-
def play_segment(evt: gr.SelectData, raw_ts_list, current_audio_path):
|
| 425 |
-
if not isinstance(raw_ts_list, list):
|
| 426 |
-
print(f"Warning: raw_ts_list is not a list ({type(raw_ts_list)}). Cannot play segment.")
|
| 427 |
-
return gr.Audio(value=None, label="Selected Segment")
|
| 428 |
-
|
| 429 |
-
if not current_audio_path:
|
| 430 |
-
print("No audio path available to play segment from.")
|
| 431 |
-
return gr.Audio(value=None, label="Selected Segment")
|
| 432 |
-
|
| 433 |
-
selected_index = evt.index[0]
|
| 434 |
-
|
| 435 |
-
if selected_index < 0 or selected_index >= len(raw_ts_list):
|
| 436 |
-
print(f"Invalid index {selected_index} selected for list of length {len(raw_ts_list)}.")
|
| 437 |
-
return gr.Audio(value=None, label="Selected Segment")
|
| 438 |
-
|
| 439 |
-
if not isinstance(raw_ts_list[selected_index], (list, tuple)) or len(raw_ts_list[selected_index]) != 2:
|
| 440 |
-
print(f"Warning: Data at index {selected_index} is not in the expected format [start, end].")
|
| 441 |
-
return gr.Audio(value=None, label="Selected Segment")
|
| 442 |
-
|
| 443 |
-
start_time_s, end_time_s = raw_ts_list[selected_index]
|
| 444 |
-
print(f"Attempting to play segment: {current_audio_path} from {start_time_s:.2f}s to {end_time_s:.2f}s")
|
| 445 |
-
segment_data = get_audio_segment(current_audio_path, start_time_s, end_time_s)
|
| 446 |
-
|
| 447 |
-
if segment_data:
|
| 448 |
-
print("Segment data retrieved successfully.")
|
| 449 |
-
return gr.Audio(value=segment_data, autoplay=True, label=f"Segment: {start_time_s:.2f}s - {end_time_s:.2f}s", interactive=False)
|
| 450 |
-
else:
|
| 451 |
-
print("Failed to get audio segment data.")
|
| 452 |
-
return gr.Audio(value=None, label="Selected Segment")
|
| 453 |
-
|
| 454 |
-
def write_srt(segments, path):
|
| 455 |
-
def sec2srt(t):
|
| 456 |
-
h, rem = divmod(int(float(t)), 3600)
|
| 457 |
-
m, s = divmod(rem, 60)
|
| 458 |
-
ms = int((float(t) - int(float(t))) * 1000)
|
| 459 |
-
return f"{h:02}:{m:02}:{s:02},{ms:03}"
|
| 460 |
-
with open(path, "w", encoding="utf-8") as f:
|
| 461 |
-
for i, seg in enumerate(segments, 1):
|
| 462 |
-
f.write(f"{i}\n{sec2srt(seg[0])} --> {sec2srt(seg[1])}\n{seg[2]}\n\n")
|
| 463 |
-
|
| 464 |
-
def write_vtt(segments, words, path):
|
| 465 |
-
def sec2vtt(t):
|
| 466 |
-
h, rem = divmod(int(float(t)), 3600)
|
| 467 |
-
m, s = divmod(rem, 60)
|
| 468 |
-
ms = int((float(t) - int(float(t))) * 1000)
|
| 469 |
-
return f"{h:02}:{m:02}:{s:02}.{ms:03}"
|
| 470 |
-
|
| 471 |
-
with open(path, "w", encoding="utf-8") as f:
|
| 472 |
-
f.write("WEBVTT\n\n")
|
| 473 |
-
|
| 474 |
-
word_idx = 0
|
| 475 |
-
for seg_idx, seg in enumerate(segments): # segmentにもインデックスが必要な場合に備えてenumerateする
|
| 476 |
-
s_start = float(seg[0])
|
| 477 |
-
s_end = float(seg[1])
|
| 478 |
-
# s_text = seg[2] # s_textはこの関数内では直接VTT出力に使われていない模様
|
| 479 |
-
|
| 480 |
-
segment_words = []
|
| 481 |
-
temp_word_idx = word_idx # 現在のword_idxから探索を開始
|
| 482 |
-
while temp_word_idx < len(words):
|
| 483 |
-
w = words[temp_word_idx]
|
| 484 |
-
w_start_val = float(w[0])
|
| 485 |
-
w_end_val = float(w[1])
|
| 486 |
-
# 単語が現在のセグメントに完全に含まれるか、一部でも重なっていれば含める
|
| 487 |
-
# ここでは元のロジックを踏襲し、セグメント内に開始・終了がある単語を対象とする
|
| 488 |
-
if w_start_val >= s_start and w_end_val <= s_end:
|
| 489 |
-
segment_words.append(w)
|
| 490 |
-
if temp_word_idx == word_idx: # segment_words に追加された最初の単語なら word_idx を進める
|
| 491 |
-
word_idx = temp_word_idx + 1
|
| 492 |
-
temp_word_idx += 1
|
| 493 |
-
elif w_start_val < s_start and w_end_val > s_start: # 単語がセグメント開始をまたぐ場合
|
| 494 |
-
# 必要であれば、このようなケースの単語も segment_words に含める処理を追加
|
| 495 |
-
temp_word_idx += 1
|
| 496 |
-
elif w_start_val > s_end: # 単語の開始がセグメントの終了より後なら、このセグメントの単語は終わり
|
| 497 |
-
break
|
| 498 |
-
else: # 上記以外 (単語がセグメントより完全に前など)
|
| 499 |
-
if temp_word_idx == word_idx: # word_idx が進まない場合を避ける
|
| 500 |
-
word_idx = temp_word_idx + 1
|
| 501 |
-
temp_word_idx += 1
|
| 502 |
-
|
| 503 |
-
# 各単語ごとにタイムスタンプを生成
|
| 504 |
-
for i, word_data in enumerate(segment_words):
|
| 505 |
-
w_start = float(word_data[0])
|
| 506 |
-
w_end = float(word_data[1])
|
| 507 |
-
|
| 508 |
-
# 現在の単語を強調表示し、他の単語は通常表示
|
| 509 |
-
colored_text = ""
|
| 510 |
-
for j, other_word_data in enumerate(segment_words):
|
| 511 |
-
if j == i: # 現在の単語 (i番目) を強調
|
| 512 |
-
colored_text += f"<c.yellow><b>{other_word_data[2]}</b></c> "
|
| 513 |
-
else:
|
| 514 |
-
colored_text += f"{other_word_data[2]} "
|
| 515 |
-
|
| 516 |
-
f.write(f"{sec2vtt(w_start)} --> {sec2vtt(w_end)}\n{colored_text.strip()}\n\n")
|
| 517 |
-
|
| 518 |
-
def write_json(segments, words, path):
|
| 519 |
-
result = {"segments": []}
|
| 520 |
-
word_idx = 0
|
| 521 |
-
for s in segments:
|
| 522 |
-
s_start = float(s[0])
|
| 523 |
-
s_end = float(s[1])
|
| 524 |
-
s_text = s[2]
|
| 525 |
-
word_list = []
|
| 526 |
-
while word_idx < len(words):
|
| 527 |
-
w = words[word_idx]
|
| 528 |
-
w_start = float(w[0])
|
| 529 |
-
w_end = float(w[1])
|
| 530 |
-
if w_start >= s_start and w_end <= s_end:
|
| 531 |
-
word_list.append({"start": w_start, "end": w_end, "word": w[2]})
|
| 532 |
-
word_idx += 1
|
| 533 |
-
elif w_end < s_start:
|
| 534 |
-
word_idx += 1
|
| 535 |
-
else:
|
| 536 |
-
break
|
| 537 |
-
result["segments"].append({
|
| 538 |
-
"start": s_start,
|
| 539 |
-
"end": s_end,
|
| 540 |
-
"text": s_text,
|
| 541 |
-
"words": word_list
|
| 542 |
-
})
|
| 543 |
-
with open(path, "w", encoding="utf-8") as f:
|
| 544 |
-
json.dump(result, f, ensure_ascii=False, indent=2)
|
| 545 |
-
|
| 546 |
-
def write_lrc(segments, path):
|
| 547 |
-
def sec2lrc(t):
|
| 548 |
-
m, s = divmod(float(t), 60)
|
| 549 |
-
return f"[{int(m):02}:{s:05.2f}]"
|
| 550 |
-
with open(path, "w", encoding="utf-8") as f:
|
| 551 |
-
for seg in segments:
|
| 552 |
-
f.write(f"{sec2lrc(seg[0])}{seg[2]}\n")
|
| 553 |
-
|
| 554 |
-
article = (
|
| 555 |
-
"<p style='font-size: 1.1em;'>"
|
| 556 |
-
"このデモは <code><a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2' target='_blank'>parakeet-tdt-0.6b-v2</a></code> "
|
| 557 |
-
"(約6億パラメータ)を用いた高精度な英語音声文字起こしを実演します。"
|
| 558 |
-
"</p>"
|
| 559 |
-
"<p><strong style='color: red; font-size: 1.2em;'>主な特長:</strong></p>"
|
| 560 |
-
"<ul style='font-size: 1.1em;'>" " <li>自動句読点・大文字化</li>"
|
| 561 |
-
" <li>単語レベルのタイムスタンプ(下表クリックで該当区間を再生)</li>"
|
| 562 |
-
" <li>文字レベルのタイムスタンプ表示にも対応</li>"
|
| 563 |
-
" <li>自動チャンク処理による <strong>長時間音声</strong> の効率的な文字起こし(数時間以上の音声にも対応)</li>"
|
| 564 |
-
" <li>数字や歌詞など発話の多様なケースに高いロバスト性</li>"
|
| 565 |
-
"</ul>"
|
| 566 |
-
"<p style='font-size: 1.1em;'>"
|
| 567 |
-
"商用・非商用ともに <strong>ライセンス制限なく利用可能</strong> です。"
|
| 568 |
-
"</p>"
|
| 569 |
-
"<p style='text-align: center;'>"
|
| 570 |
-
"<a href='https://huggingface.co/nvidia/parakeet-tdt-0.6b-v2' target='_blank'>🎙️ モデル詳細</a> | "
|
| 571 |
-
"<a href='https://arxiv.org/abs/2305.05084' target='_blank'>📄 Fast Conformer 論文</a> | "
|
| 572 |
-
"<a href='https://arxiv.org/abs/2304.06795' target='_blank'>📚 TDT 論文</a> | "
|
| 573 |
-
"<a href='https://github.com/NVIDIA/NeMo' target='_blank'>🧑💻 NeMo リポジトリ</a>"
|
| 574 |
-
"</p>"
|
| 575 |
-
)
|
| 576 |
-
|
| 577 |
-
examples = [
|
| 578 |
-
["data/example-yt_saTD1u8PorI.mp3"],
|
| 579 |
-
]
|
| 580 |
-
|
| 581 |
-
nvidia_theme = gr_themes.Default(
|
| 582 |
-
primary_hue=gr_themes.Color(
|
| 583 |
-
c50="#E6F1D9", c100="#CEE3B3", c200="#B5D58C", c300="#9CC766",
|
| 584 |
-
c400="#84B940", c500="#76B900", c600="#68A600", c700="#5A9200",
|
| 585 |
-
c800="#4C7E00", c900="#3E6A00", c950="#2F5600"
|
| 586 |
-
),
|
| 587 |
-
neutral_hue="gray",
|
| 588 |
-
font=[gr_themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif"],
|
| 589 |
-
).set()
|
| 590 |
-
|
| 591 |
-
with gr.Blocks(theme=nvidia_theme) as demo:
|
| 592 |
-
model_display_name = MODEL_NAME.split('/')[-1] if '/' in MODEL_NAME else MODEL_NAME
|
| 593 |
-
gr.Markdown(f"<h1 style='text-align: center; margin: 0 auto;'>長時間対応 音声文字起こし ({model_display_name})</h1>")
|
| 594 |
-
gr.HTML(article)
|
| 595 |
-
|
| 596 |
-
current_audio_path_state = gr.State(None)
|
| 597 |
-
raw_timestamps_list_state = gr.State([])
|
| 598 |
-
session_dir_state = gr.State()
|
| 599 |
-
demo.load(start_session, outputs=[session_dir_state])
|
| 600 |
-
|
| 601 |
-
with gr.Tabs():
|
| 602 |
-
with gr.TabItem("Audio File"):
|
| 603 |
-
file_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File")
|
| 604 |
-
gr.Examples(examples=examples, inputs=[file_input], label="Example Audio Files (Click to Load)")
|
| 605 |
-
file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary")
|
| 606 |
-
|
| 607 |
-
with gr.TabItem("Microphone"):
|
| 608 |
-
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
|
| 609 |
-
mic_transcribe_btn = gr.Button("Transcribe Microphone Input", variant="primary")
|
| 610 |
-
|
| 611 |
-
gr.Markdown("---")
|
| 612 |
-
gr.Markdown("<p><strong style='color: #FF0000; font-size: 1.2em;'>Transcription Results</strong></p>")
|
| 613 |
-
|
| 614 |
-
download_btn = gr.DownloadButton(label="Download Segment Transcript (CSV)", visible=False)
|
| 615 |
-
srt_btn = gr.DownloadButton(label="Download SRT", visible=False)
|
| 616 |
-
vtt_btn = gr.DownloadButton(label="Download VTT", visible=False)
|
| 617 |
-
json_btn = gr.DownloadButton(label="Download JSON", visible=False)
|
| 618 |
-
lrc_btn = gr.DownloadButton(label="Download LRC", visible=False)
|
| 619 |
-
|
| 620 |
-
with gr.Tabs():
|
| 621 |
-
with gr.TabItem("Segment View (Click row to play segment)"):
|
| 622 |
-
vis_timestamps_df = gr.DataFrame(
|
| 623 |
-
headers=["Start (s)", "End (s)", "Segment"],
|
| 624 |
-
datatype=["number", "number", "str"],
|
| 625 |
-
wrap=True,
|
| 626 |
-
)
|
| 627 |
-
selected_segment_player = gr.Audio(label="Selected Segment", interactive=False)
|
| 628 |
-
|
| 629 |
-
with gr.TabItem("Word View"):
|
| 630 |
-
word_vis_df = gr.DataFrame(
|
| 631 |
-
headers=["Start (s)", "End (s)", "Word"],
|
| 632 |
-
datatype=["number", "number", "str"],
|
| 633 |
-
wrap=False,
|
| 634 |
-
)
|
| 635 |
-
|
| 636 |
-
mic_transcribe_btn.click(
|
| 637 |
-
fn=get_transcripts_and_raw_times,
|
| 638 |
-
inputs=[mic_input, session_dir_state],
|
| 639 |
-
outputs=[vis_timestamps_df, raw_timestamps_list_state, word_vis_df, current_audio_path_state, download_btn, srt_btn, vtt_btn, json_btn, lrc_btn],
|
| 640 |
-
api_name="transcribe_mic"
|
| 641 |
-
)
|
| 642 |
-
|
| 643 |
-
file_transcribe_btn.click(
|
| 644 |
-
fn=get_transcripts_and_raw_times,
|
| 645 |
-
inputs=[file_input, session_dir_state],
|
| 646 |
-
outputs=[vis_timestamps_df, raw_timestamps_list_state, word_vis_df, current_audio_path_state, download_btn, srt_btn, vtt_btn, json_btn, lrc_btn],
|
| 647 |
-
api_name="transcribe_file"
|
| 648 |
-
)
|
| 649 |
-
|
| 650 |
-
vis_timestamps_df.select(
|
| 651 |
-
fn=play_segment,
|
| 652 |
-
inputs=[raw_timestamps_list_state, current_audio_path_state],
|
| 653 |
-
outputs=[selected_segment_player],
|
| 654 |
-
)
|
| 655 |
-
|
| 656 |
-
demo.unload(end_session)
|
| 657 |
-
|
| 658 |
-
if __name__ == "__main__":
|
| 659 |
-
print("Launching Gradio Demo...")
|
| 660 |
-
demo.queue(
|
| 661 |
-
max_size=5,
|
| 662 |
-
default_concurrency_limit=1 # イベントリスナーのデフォルト同時実行数を1に設定
|
| 663 |
-
)
|
| 664 |
-
demo.launch(
|
| 665 |
-
server_name="127.0.0.1",
|
| 666 |
-
server_port=7860,
|
| 667 |
-
share=False,
|
| 668 |
-
max_threads=1 # サーバー全体の同時処理スレッド数を1に設定
|
| 669 |
-
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
app_wsl.py
CHANGED
|
@@ -38,33 +38,6 @@ def end_session(request: gr.Request):
|
|
| 38 |
# shutil.rmtree(session_dir)
|
| 39 |
print(f"Session with hash {session_hash} ended.")
|
| 40 |
|
| 41 |
-
def get_server_files(server_dir: str = None) -> List[str]:
|
| 42 |
-
"""
|
| 43 |
-
サーバー側の指定ディレクトリ内の音声ファイルの一覧を取得する。
|
| 44 |
-
|
| 45 |
-
Args:
|
| 46 |
-
server_dir (str, optional): 検索するディレクトリ。Noneの場合はデフォルトの場所を使用。
|
| 47 |
-
|
| 48 |
-
Returns:
|
| 49 |
-
List[str]: 音声ファイルのパスのリスト
|
| 50 |
-
"""
|
| 51 |
-
if server_dir is None:
|
| 52 |
-
server_dir = str(Path(__file__).parent / "data")
|
| 53 |
-
|
| 54 |
-
audio_extensions = {".mp3", ".wav", ".m4a", ".ogg", ".flac"}
|
| 55 |
-
audio_files = []
|
| 56 |
-
|
| 57 |
-
try:
|
| 58 |
-
for root, _, files in os.walk(server_dir):
|
| 59 |
-
for file in files:
|
| 60 |
-
if Path(file).suffix.lower() in audio_extensions:
|
| 61 |
-
full_path = str(Path(root) / file)
|
| 62 |
-
audio_files.append(full_path)
|
| 63 |
-
return sorted(audio_files)
|
| 64 |
-
except Exception as e:
|
| 65 |
-
print(f"Error scanning directory {server_dir}: {e}")
|
| 66 |
-
return []
|
| 67 |
-
|
| 68 |
def get_audio_segment(audio_path, start_second, end_second):
|
| 69 |
if not audio_path or not Path(audio_path).exists():
|
| 70 |
print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.")
|
|
@@ -623,22 +596,14 @@ with gr.Blocks(theme=nvidia_theme) as demo:
|
|
| 623 |
current_audio_path_state = gr.State(None)
|
| 624 |
raw_timestamps_list_state = gr.State([])
|
| 625 |
session_dir_state = gr.State()
|
| 626 |
-
demo.load(start_session, outputs=[session_dir_state])
|
| 627 |
-
|
|
|
|
|
|
|
| 628 |
file_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File")
|
| 629 |
gr.Examples(examples=examples, inputs=[file_input], label="Example Audio Files (Click to Load)")
|
| 630 |
file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary")
|
| 631 |
|
| 632 |
-
with gr.TabItem("Server Files"):
|
| 633 |
-
server_files = get_server_files()
|
| 634 |
-
server_file_dropdown = gr.Dropdown(
|
| 635 |
-
choices=server_files,
|
| 636 |
-
value=server_files[0] if server_files else None,
|
| 637 |
-
label="Select Audio File from Server",
|
| 638 |
-
type="value"
|
| 639 |
-
)
|
| 640 |
-
server_file_transcribe_btn = gr.Button("Transcribe Selected File", variant="primary")
|
| 641 |
-
|
| 642 |
with gr.TabItem("Microphone"):
|
| 643 |
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
|
| 644 |
mic_transcribe_btn = gr.Button("Transcribe Microphone Input", variant="primary")
|
|
|
|
| 38 |
# shutil.rmtree(session_dir)
|
| 39 |
print(f"Session with hash {session_hash} ended.")
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
def get_audio_segment(audio_path, start_second, end_second):
|
| 42 |
if not audio_path or not Path(audio_path).exists():
|
| 43 |
print(f"Warning: Audio path '{audio_path}' not found or invalid for clipping.")
|
|
|
|
| 596 |
current_audio_path_state = gr.State(None)
|
| 597 |
raw_timestamps_list_state = gr.State([])
|
| 598 |
session_dir_state = gr.State()
|
| 599 |
+
demo.load(start_session, outputs=[session_dir_state])
|
| 600 |
+
|
| 601 |
+
with gr.Tabs():
|
| 602 |
+
with gr.TabItem("Audio File"):
|
| 603 |
file_input = gr.Audio(sources=["upload"], type="filepath", label="Upload Audio File")
|
| 604 |
gr.Examples(examples=examples, inputs=[file_input], label="Example Audio Files (Click to Load)")
|
| 605 |
file_transcribe_btn = gr.Button("Transcribe Uploaded File", variant="primary")
|
| 606 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 607 |
with gr.TabItem("Microphone"):
|
| 608 |
mic_input = gr.Audio(sources=["microphone"], type="filepath", label="Record Audio")
|
| 609 |
mic_transcribe_btn = gr.Button("Transcribe Microphone Input", variant="primary")
|
run_parakeet.bat
CHANGED
|
@@ -1,37 +1,51 @@
|
|
| 1 |
@echo off
|
| 2 |
-
REM
|
| 3 |
chcp 65001
|
| 4 |
|
| 5 |
REM ============================================================================
|
| 6 |
-
REM
|
| 7 |
-
REM -
|
| 8 |
-
REM -
|
| 9 |
-
REM - Launches the Parakeet ASR application
|
| 10 |
REM ============================================================================
|
| 11 |
|
| 12 |
-
echo [Info]
|
| 13 |
echo.
|
| 14 |
|
| 15 |
-
REM
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
|
| 19 |
-
echo [Info] Cleaning up existing processes...
|
| 20 |
-
wsl.exe bash -ic "pkill -f 'python.*app_wsl.py'" 2>nul
|
| 21 |
-
timeout /t 2 /nobreak > nul
|
| 22 |
|
| 23 |
-
REM
|
| 24 |
-
|
| 25 |
-
wsl.exe bash -ic "
|
| 26 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
|
|
|
| 28 |
if errorlevel 1 (
|
| 29 |
-
echo
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
echo.
|
| 33 |
-
echo 終了するには何かキーを押してください...
|
| 34 |
-
pause > nul
|
| 35 |
) else (
|
| 36 |
popd
|
| 37 |
-
|
|
|
|
|
|
| 1 |
@echo off
|
| 2 |
+
REM UTF-8コードページ設定
|
| 3 |
chcp 65001
|
| 4 |
|
| 5 |
REM ============================================================================
|
| 6 |
+
REM Parakeet ASR ディレクトリ処理バージョン
|
| 7 |
+
REM - ディレクトリ選択ダイアログを表示
|
| 8 |
+
REM - WSLパスに変換してPythonスクリプト実行
|
|
|
|
| 9 |
REM ============================================================================
|
| 10 |
|
| 11 |
+
echo [Info] Parakeet音声認識を起動します...
|
| 12 |
echo.
|
| 13 |
|
| 14 |
+
REM ディレクトリ選択ダイアログ表示
|
| 15 |
+
set "WSL_DIR="
|
| 16 |
+
for /f "usebackq delims=" %%d in (`powershell -STA -Command ^
|
| 17 |
+
"Add-Type -AssemblyName System.Windows.Forms; ^
|
| 18 |
+
$dialog = New-Object System.Windows.Forms.FolderBrowserDialog; ^
|
| 19 |
+
$dialog.Description = '処理するディレクトリを選択'; ^
|
| 20 |
+
if($dialog.ShowDialog() -eq 'OK'){Write-Output $dialog.SelectedPath}"`) do (
|
| 21 |
+
set "WIN_DIR=%%d"
|
| 22 |
+
)
|
| 23 |
+
|
| 24 |
+
REM ディレクトリ未選択時の処理
|
| 25 |
+
if not defined WIN_DIR (
|
| 26 |
+
echo [Error] ディレクトリが選択されませんでした
|
| 27 |
+
pause
|
| 28 |
+
exit /b 1
|
| 29 |
+
)
|
| 30 |
|
| 31 |
+
echo [Info] 選択されたディレクトリ: %WIN_DIR%
|
|
|
|
|
|
|
|
|
|
| 32 |
|
| 33 |
+
REM WSL環境での実行
|
| 34 |
+
pushd "%~dp0"
|
| 35 |
+
wsl.exe bash -ic "\
|
| 36 |
+
export WIN_DIR='%WIN_DIR:\=\\%'; \
|
| 37 |
+
target_dir=\$(wslpath -a \"\$WIN_DIR\"); \
|
| 38 |
+
cd \"$(wslpath -a '%cd%')\" && \
|
| 39 |
+
source ~/miniconda3/etc/profile.d/conda.sh && \
|
| 40 |
+
conda activate parakeet-env && \
|
| 41 |
+
python transcribe_cli.py \"\$target_dir\""
|
| 42 |
|
| 43 |
+
REM エラーチェック
|
| 44 |
if errorlevel 1 (
|
| 45 |
+
echo [Error] 処理中にエラーが発生しました
|
| 46 |
+
pause
|
| 47 |
+
exit /b 1
|
|
|
|
|
|
|
|
|
|
| 48 |
) else (
|
| 49 |
popd
|
| 50 |
+
exit /b 0
|
| 51 |
+
)
|