Spaces:
Sleeping
Sleeping
| from torch.nn import ( | |
| Linear, | |
| Conv2d, | |
| BatchNorm1d, | |
| BatchNorm2d, | |
| PReLU, | |
| ReLU, | |
| Sigmoid, | |
| Dropout, | |
| MaxPool2d, | |
| AdaptiveAvgPool2d, | |
| Sequential, | |
| Module, | |
| Parameter, | |
| ) | |
| import torch | |
| from collections import namedtuple | |
| import math | |
| ################################## Original Arcface Model ############################################################# | |
| class Flatten(Module): | |
| def forward(self, input): | |
| return input.view(input.size(0), -1) | |
| def l2_norm(input, axis=1): | |
| norm = torch.norm(input, 2, axis, True) | |
| output = torch.div(input, norm) | |
| return output | |
| class SEModule(Module): | |
| def __init__(self, channels, reduction): | |
| super(SEModule, self).__init__() | |
| self.avg_pool = AdaptiveAvgPool2d(1) | |
| self.fc1 = Conv2d( | |
| channels, channels // reduction, kernel_size=1, padding=0, bias=False | |
| ) | |
| self.relu = ReLU(inplace=True) | |
| self.fc2 = Conv2d( | |
| channels // reduction, channels, kernel_size=1, padding=0, bias=False | |
| ) | |
| self.sigmoid = Sigmoid() | |
| def forward(self, x): | |
| module_input = x | |
| x = self.avg_pool(x) | |
| x = self.fc1(x) | |
| x = self.relu(x) | |
| x = self.fc2(x) | |
| x = self.sigmoid(x) | |
| return module_input * x | |
| class bottleneck_IR(Module): | |
| def __init__(self, in_channel, depth, stride): | |
| super(bottleneck_IR, self).__init__() | |
| if in_channel == depth: | |
| self.shortcut_layer = MaxPool2d(1, stride) | |
| else: | |
| self.shortcut_layer = Sequential( | |
| Conv2d(in_channel, depth, (1, 1), stride, bias=False), | |
| BatchNorm2d(depth), | |
| ) | |
| self.res_layer = Sequential( | |
| BatchNorm2d(in_channel), | |
| Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), | |
| PReLU(depth), | |
| Conv2d(depth, depth, (3, 3), stride, 1, bias=False), | |
| BatchNorm2d(depth), | |
| ) | |
| def forward(self, x): | |
| shortcut = self.shortcut_layer(x) | |
| res = self.res_layer(x) | |
| return res + shortcut | |
| class bottleneck_IR_SE(Module): | |
| def __init__(self, in_channel, depth, stride): | |
| super(bottleneck_IR_SE, self).__init__() | |
| if in_channel == depth: | |
| self.shortcut_layer = MaxPool2d(1, stride) | |
| else: | |
| self.shortcut_layer = Sequential( | |
| Conv2d(in_channel, depth, (1, 1), stride, bias=False), | |
| BatchNorm2d(depth), | |
| ) | |
| self.res_layer = Sequential( | |
| BatchNorm2d(in_channel), | |
| Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), | |
| PReLU(depth), | |
| Conv2d(depth, depth, (3, 3), stride, 1, bias=False), | |
| BatchNorm2d(depth), | |
| SEModule(depth, 16), | |
| ) | |
| def forward(self, x): | |
| shortcut = self.shortcut_layer(x) | |
| res = self.res_layer(x) | |
| return res + shortcut | |
| class Bottleneck(namedtuple("Block", ["in_channel", "depth", "stride"])): | |
| """A named tuple describing a ResNet block.""" | |
| def get_block(in_channel, depth, num_units, stride=2): | |
| return [Bottleneck(in_channel, depth, stride)] + [ | |
| Bottleneck(depth, depth, 1) for i in range(num_units - 1) | |
| ] | |
| def get_blocks(num_layers): | |
| if num_layers == 50: | |
| blocks = [ | |
| get_block(in_channel=64, depth=64, num_units=3), | |
| get_block(in_channel=64, depth=128, num_units=4), | |
| get_block(in_channel=128, depth=256, num_units=14), | |
| get_block(in_channel=256, depth=512, num_units=3), | |
| ] | |
| elif num_layers == 100: | |
| blocks = [ | |
| get_block(in_channel=64, depth=64, num_units=3), | |
| get_block(in_channel=64, depth=128, num_units=13), | |
| get_block(in_channel=128, depth=256, num_units=30), | |
| get_block(in_channel=256, depth=512, num_units=3), | |
| ] | |
| elif num_layers == 152: | |
| blocks = [ | |
| get_block(in_channel=64, depth=64, num_units=3), | |
| get_block(in_channel=64, depth=128, num_units=8), | |
| get_block(in_channel=128, depth=256, num_units=36), | |
| get_block(in_channel=256, depth=512, num_units=3), | |
| ] | |
| return blocks | |
| class Backbone(Module): | |
| def __init__(self, num_layers, drop_ratio, mode="ir"): | |
| super(Backbone, self).__init__() | |
| assert num_layers in [50, 100, 152], "num_layers should be 50,100, or 152" | |
| assert mode in ["ir", "ir_se"], "mode should be ir or ir_se" | |
| blocks = get_blocks(num_layers) | |
| if mode == "ir": | |
| unit_module = bottleneck_IR | |
| elif mode == "ir_se": | |
| unit_module = bottleneck_IR_SE | |
| self.input_layer = Sequential( | |
| Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64) | |
| ) | |
| self.output_layer = Sequential( | |
| BatchNorm2d(512), | |
| Dropout(drop_ratio), | |
| Flatten(), | |
| Linear(512 * 7 * 7, 512), | |
| BatchNorm1d(512), | |
| ) | |
| modules = [] | |
| for block in blocks: | |
| for bottleneck in block: | |
| modules.append( | |
| unit_module( | |
| bottleneck.in_channel, bottleneck.depth, bottleneck.stride | |
| ) | |
| ) | |
| self.body = Sequential(*modules) | |
| def forward(self, x): | |
| x = self.input_layer(x) | |
| x = self.body(x) | |
| x = self.output_layer(x) | |
| return l2_norm(x) | |
| ################################## MobileFaceNet ############################################################# | |
| class Conv_block(Module): | |
| def __init__( | |
| self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1 | |
| ): | |
| super(Conv_block, self).__init__() | |
| self.conv = Conv2d( | |
| in_c, | |
| out_channels=out_c, | |
| kernel_size=kernel, | |
| groups=groups, | |
| stride=stride, | |
| padding=padding, | |
| bias=False, | |
| ) | |
| self.bn = BatchNorm2d(out_c) | |
| self.prelu = PReLU(out_c) | |
| def forward(self, x): | |
| x = self.conv(x) | |
| x = self.bn(x) | |
| x = self.prelu(x) | |
| return x | |
| class Linear_block(Module): | |
| def __init__( | |
| self, in_c, out_c, kernel=(1, 1), stride=(1, 1), padding=(0, 0), groups=1 | |
| ): | |
| super(Linear_block, self).__init__() | |
| self.conv = Conv2d( | |
| in_c, | |
| out_channels=out_c, | |
| kernel_size=kernel, | |
| groups=groups, | |
| stride=stride, | |
| padding=padding, | |
| bias=False, | |
| ) | |
| self.bn = BatchNorm2d(out_c) | |
| def forward(self, x): | |
| x = self.conv(x) | |
| x = self.bn(x) | |
| return x | |
| class Depth_Wise(Module): | |
| def __init__( | |
| self, | |
| in_c, | |
| out_c, | |
| residual=False, | |
| kernel=(3, 3), | |
| stride=(2, 2), | |
| padding=(1, 1), | |
| groups=1, | |
| ): | |
| super(Depth_Wise, self).__init__() | |
| self.conv = Conv_block( | |
| in_c, out_c=groups, kernel=(1, 1), padding=(0, 0), stride=(1, 1) | |
| ) | |
| self.conv_dw = Conv_block( | |
| groups, groups, groups=groups, kernel=kernel, padding=padding, stride=stride | |
| ) | |
| self.project = Linear_block( | |
| groups, out_c, kernel=(1, 1), padding=(0, 0), stride=(1, 1) | |
| ) | |
| self.residual = residual | |
| def forward(self, x): | |
| if self.residual: | |
| short_cut = x | |
| x = self.conv(x) | |
| x = self.conv_dw(x) | |
| x = self.project(x) | |
| if self.residual: | |
| output = short_cut + x | |
| else: | |
| output = x | |
| return output | |
| class Residual(Module): | |
| def __init__( | |
| self, c, num_block, groups, kernel=(3, 3), stride=(1, 1), padding=(1, 1) | |
| ): | |
| super(Residual, self).__init__() | |
| modules = [] | |
| for _ in range(num_block): | |
| modules.append( | |
| Depth_Wise( | |
| c, | |
| c, | |
| residual=True, | |
| kernel=kernel, | |
| padding=padding, | |
| stride=stride, | |
| groups=groups, | |
| ) | |
| ) | |
| self.model = Sequential(*modules) | |
| def forward(self, x): | |
| return self.model(x) | |
| class MobileFaceNet(Module): | |
| def __init__(self, embedding_size): | |
| super(MobileFaceNet, self).__init__() | |
| self.conv1 = Conv_block(3, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1)) | |
| self.conv2_dw = Conv_block( | |
| 64, 64, kernel=(3, 3), stride=(1, 1), padding=(1, 1), groups=64 | |
| ) | |
| self.conv_23 = Depth_Wise( | |
| 64, 64, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=128 | |
| ) | |
| self.conv_3 = Residual( | |
| 64, num_block=4, groups=128, kernel=(3, 3), stride=(1, 1), padding=(1, 1) | |
| ) | |
| self.conv_34 = Depth_Wise( | |
| 64, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=256 | |
| ) | |
| self.conv_4 = Residual( | |
| 128, num_block=6, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1) | |
| ) | |
| self.conv_45 = Depth_Wise( | |
| 128, 128, kernel=(3, 3), stride=(2, 2), padding=(1, 1), groups=512 | |
| ) | |
| self.conv_5 = Residual( | |
| 128, num_block=2, groups=256, kernel=(3, 3), stride=(1, 1), padding=(1, 1) | |
| ) | |
| self.conv_6_sep = Conv_block( | |
| 128, 512, kernel=(1, 1), stride=(1, 1), padding=(0, 0) | |
| ) | |
| self.conv_6_dw = Linear_block( | |
| 512, 512, groups=512, kernel=(7, 7), stride=(1, 1), padding=(0, 0) | |
| ) | |
| self.conv_6_flatten = Flatten() | |
| self.linear = Linear(512, embedding_size, bias=False) | |
| self.bn = BatchNorm1d(embedding_size) | |
| def forward(self, x): | |
| out = self.conv1(x) | |
| out = self.conv2_dw(out) | |
| out = self.conv_23(out) | |
| out = self.conv_3(out) | |
| out = self.conv_34(out) | |
| out = self.conv_4(out) | |
| out = self.conv_45(out) | |
| out = self.conv_5(out) | |
| out = self.conv_6_sep(out) | |
| out = self.conv_6_dw(out) | |
| out = self.conv_6_flatten(out) | |
| out = self.linear(out) | |
| out = self.bn(out) | |
| return l2_norm(out) | |
| ################################## Arcface head ############################################################# | |
| class Arcface(Module): | |
| # implementation of additive margin softmax loss in https://arxiv.org/abs/1801.05599 | |
| def __init__(self, embedding_size=512, classnum=51332, s=64.0, m=0.5): | |
| super(Arcface, self).__init__() | |
| self.classnum = classnum | |
| self.kernel = Parameter(torch.Tensor(embedding_size, classnum)) | |
| # initial kernel | |
| self.kernel.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) | |
| self.m = m # the margin value, default is 0.5 | |
| self.s = s # scalar value default is 64, see normface https://arxiv.org/abs/1704.06369 | |
| self.cos_m = math.cos(m) | |
| self.sin_m = math.sin(m) | |
| self.mm = self.sin_m * m # issue 1 | |
| self.threshold = math.cos(math.pi - m) | |
| def forward(self, embbedings, label): | |
| # weights norm | |
| nB = len(embbedings) | |
| kernel_norm = l2_norm(self.kernel, axis=0) | |
| # cos(theta+m) | |
| cos_theta = torch.mm(embbedings, kernel_norm) | |
| # output = torch.mm(embbedings,kernel_norm) | |
| cos_theta = cos_theta.clamp(-1, 1) # for numerical stability | |
| cos_theta_2 = torch.pow(cos_theta, 2) | |
| sin_theta_2 = 1 - cos_theta_2 | |
| sin_theta = torch.sqrt(sin_theta_2) | |
| cos_theta_m = cos_theta * self.cos_m - sin_theta * self.sin_m | |
| # this condition controls the theta+m should in range [0, pi] | |
| # 0<=theta+m<=pi | |
| # -m<=theta<=pi-m | |
| cond_v = cos_theta - self.threshold | |
| cond_mask = cond_v <= 0 | |
| keep_val = cos_theta - self.mm # when theta not in [0,pi], use cosface instead | |
| cos_theta_m[cond_mask] = keep_val[cond_mask] | |
| output = ( | |
| cos_theta * 1.0 | |
| ) # a little bit hacky way to prevent in_place operation on cos_theta | |
| idx_ = torch.arange(0, nB, dtype=torch.long) | |
| output[idx_, label] = cos_theta_m[idx_, label] | |
| output *= ( | |
| self.s | |
| ) # scale up in order to make softmax work, first introduced in normface | |
| return output | |
| ################################## Cosface head ############################################################# | |
| class Am_softmax(Module): | |
| # implementation of additive margin softmax loss in https://arxiv.org/abs/1801.05599 | |
| def __init__(self, embedding_size=512, classnum=51332): | |
| super(Am_softmax, self).__init__() | |
| self.classnum = classnum | |
| self.kernel = Parameter(torch.Tensor(embedding_size, classnum)) | |
| # initial kernel | |
| self.kernel.data.uniform_(-1, 1).renorm_(2, 1, 1e-5).mul_(1e5) | |
| self.m = 0.35 # additive margin recommended by the paper | |
| self.s = 30.0 # see normface https://arxiv.org/abs/1704.06369 | |
| def forward(self, embbedings, label): | |
| kernel_norm = l2_norm(self.kernel, axis=0) | |
| cos_theta = torch.mm(embbedings, kernel_norm) | |
| cos_theta = cos_theta.clamp(-1, 1) # for numerical stability | |
| phi = cos_theta - self.m | |
| label = label.view(-1, 1) # size=(B,1) | |
| index = cos_theta.data * 0.0 # size=(B,Classnum) | |
| index.scatter_(1, label.data.view(-1, 1), 1) | |
| index = index.byte() | |
| output = cos_theta * 1.0 | |
| output[index] = phi[index] # only change the correct predicted output | |
| output *= ( | |
| self.s | |
| ) # scale up in order to make softmax work, first introduced in normface | |
| return output | |