Spaces:
Sleeping
Sleeping
| import torch | |
| import torch.nn as nn | |
| from torch.nn import ( | |
| Linear, | |
| Conv2d, | |
| BatchNorm1d, | |
| BatchNorm2d, | |
| PReLU, | |
| ReLU, | |
| Sigmoid, | |
| Dropout, | |
| MaxPool2d, | |
| AdaptiveAvgPool2d, | |
| Sequential, | |
| Module, | |
| ) | |
| from collections import namedtuple | |
| # Support: ['IR_50', 'IR_101', 'IR_152', 'IR_SE_50', 'IR_SE_101', 'IR_SE_152'] | |
| class Flatten(Module): | |
| def forward(self, input): | |
| return input.view(input.size(0), -1) | |
| def l2_norm(input, axis=1): | |
| norm = torch.norm(input, 2, axis, True) | |
| output = torch.div(input, norm) | |
| return output | |
| class SEModule(Module): | |
| def __init__(self, channels, reduction): | |
| super(SEModule, self).__init__() | |
| self.avg_pool = AdaptiveAvgPool2d(1) | |
| self.fc1 = Conv2d( | |
| channels, channels // reduction, kernel_size=1, padding=0, bias=False | |
| ) | |
| nn.init.xavier_uniform_(self.fc1.weight.data) | |
| self.relu = ReLU(inplace=True) | |
| self.fc2 = Conv2d( | |
| channels // reduction, channels, kernel_size=1, padding=0, bias=False | |
| ) | |
| self.sigmoid = Sigmoid() | |
| def forward(self, x): | |
| module_input = x | |
| x = self.avg_pool(x) | |
| x = self.fc1(x) | |
| x = self.relu(x) | |
| x = self.fc2(x) | |
| x = self.sigmoid(x) | |
| return module_input * x | |
| class bottleneck_IR(Module): | |
| def __init__(self, in_channel, depth, stride): | |
| super(bottleneck_IR, self).__init__() | |
| if in_channel == depth: | |
| self.shortcut_layer = MaxPool2d(1, stride) | |
| else: | |
| self.shortcut_layer = Sequential( | |
| Conv2d(in_channel, depth, (1, 1), stride, bias=False), | |
| BatchNorm2d(depth), | |
| ) | |
| self.res_layer = Sequential( | |
| BatchNorm2d(in_channel), | |
| Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), | |
| PReLU(depth), | |
| Conv2d(depth, depth, (3, 3), stride, 1, bias=False), | |
| BatchNorm2d(depth), | |
| ) | |
| def forward(self, x): | |
| shortcut = self.shortcut_layer(x) | |
| res = self.res_layer(x) | |
| return res + shortcut | |
| class bottleneck_IR_SE(Module): | |
| def __init__(self, in_channel, depth, stride): | |
| super(bottleneck_IR_SE, self).__init__() | |
| if in_channel == depth: | |
| self.shortcut_layer = MaxPool2d(1, stride) | |
| else: | |
| self.shortcut_layer = Sequential( | |
| Conv2d(in_channel, depth, (1, 1), stride, bias=False), | |
| BatchNorm2d(depth), | |
| ) | |
| self.res_layer = Sequential( | |
| BatchNorm2d(in_channel), | |
| Conv2d(in_channel, depth, (3, 3), (1, 1), 1, bias=False), | |
| PReLU(depth), | |
| Conv2d(depth, depth, (3, 3), stride, 1, bias=False), | |
| BatchNorm2d(depth), | |
| SEModule(depth, 16), | |
| ) | |
| def forward(self, x): | |
| shortcut = self.shortcut_layer(x) | |
| res = self.res_layer(x) | |
| return res + shortcut | |
| class Bottleneck(namedtuple("Block", ["in_channel", "depth", "stride"])): | |
| """A named tuple describing a ResNet block.""" | |
| def get_block(in_channel, depth, num_units, stride=2): | |
| return [Bottleneck(in_channel, depth, stride)] + [ | |
| Bottleneck(depth, depth, 1) for i in range(num_units - 1) | |
| ] | |
| def get_blocks(num_layers): | |
| if num_layers == 50: | |
| blocks = [ | |
| get_block(in_channel=64, depth=64, num_units=3), | |
| get_block(in_channel=64, depth=128, num_units=4), | |
| get_block(in_channel=128, depth=256, num_units=14), | |
| get_block(in_channel=256, depth=512, num_units=3), | |
| ] | |
| elif num_layers == 100: | |
| blocks = [ | |
| get_block(in_channel=64, depth=64, num_units=3), | |
| get_block(in_channel=64, depth=128, num_units=13), | |
| get_block(in_channel=128, depth=256, num_units=30), | |
| get_block(in_channel=256, depth=512, num_units=3), | |
| ] | |
| elif num_layers == 152: | |
| blocks = [ | |
| get_block(in_channel=64, depth=64, num_units=3), | |
| get_block(in_channel=64, depth=128, num_units=8), | |
| get_block(in_channel=128, depth=256, num_units=36), | |
| get_block(in_channel=256, depth=512, num_units=3), | |
| ] | |
| return blocks | |
| class Backbone(Module): | |
| def __init__(self, input_size, num_layers, mode="ir"): | |
| super(Backbone, self).__init__() | |
| assert input_size[0] in [ | |
| 112, | |
| 224, | |
| ], "input_size should be [112, 112] or [224, 224]" | |
| assert num_layers in [50, 100, 152], "num_layers should be 50, 100 or 152" | |
| assert mode in ["ir", "ir_se"], "mode should be ir or ir_se" | |
| blocks = get_blocks(num_layers) | |
| if mode == "ir": | |
| unit_module = bottleneck_IR | |
| elif mode == "ir_se": | |
| unit_module = bottleneck_IR_SE | |
| self.input_layer = Sequential( | |
| Conv2d(3, 64, (3, 3), 1, 1, bias=False), BatchNorm2d(64), PReLU(64) | |
| ) | |
| if input_size[0] == 112: | |
| self.output_layer = Sequential( | |
| BatchNorm2d(512), | |
| Dropout(), | |
| Flatten(), | |
| Linear(512 * 7 * 7, 512), | |
| BatchNorm1d(512), | |
| ) | |
| else: | |
| self.output_layer = Sequential( | |
| BatchNorm2d(512), | |
| Dropout(), | |
| Flatten(), | |
| Linear(512 * 14 * 14, 512), | |
| BatchNorm1d(512), | |
| ) | |
| modules = [] | |
| for block in blocks: | |
| for bottleneck in block: | |
| modules.append( | |
| unit_module( | |
| bottleneck.in_channel, bottleneck.depth, bottleneck.stride | |
| ) | |
| ) | |
| self.body = Sequential(*modules) | |
| self._initialize_weights() | |
| def forward(self, x): | |
| x = self.input_layer(x) | |
| x = self.body(x) | |
| x = self.output_layer(x) | |
| return x | |
| def _initialize_weights(self): | |
| for m in self.modules(): | |
| if isinstance(m, nn.Conv2d): | |
| nn.init.xavier_uniform_(m.weight.data) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| elif isinstance(m, nn.BatchNorm2d): | |
| m.weight.data.fill_(1) | |
| m.bias.data.zero_() | |
| elif isinstance(m, nn.BatchNorm1d): | |
| m.weight.data.fill_(1) | |
| m.bias.data.zero_() | |
| elif isinstance(m, nn.Linear): | |
| nn.init.xavier_uniform_(m.weight.data) | |
| if m.bias is not None: | |
| m.bias.data.zero_() | |
| def IR_50(input_size): | |
| """Constructs a ir-50 model.""" | |
| model = Backbone(input_size, 50, "ir") | |
| return model | |
| def IR_101(input_size): | |
| """Constructs a ir-101 model.""" | |
| model = Backbone(input_size, 100, "ir") | |
| return model | |
| def IR_152(input_size): | |
| """Constructs a ir-152 model.""" | |
| model = Backbone(input_size, 152, "ir") | |
| return model | |
| def IR_SE_50(input_size): | |
| """Constructs a ir_se-50 model.""" | |
| model = Backbone(input_size, 50, "ir_se") | |
| return model | |
| def IR_SE_101(input_size): | |
| """Constructs a ir_se-101 model.""" | |
| model = Backbone(input_size, 100, "ir_se") | |
| return model | |
| def IR_SE_152(input_size): | |
| """Constructs a ir_se-152 model.""" | |
| model = Backbone(input_size, 152, "ir_se") | |
| return model | |