# Helper function for extracting features from pre-trained models import torch import torch.nn.functional as F import torchvision.transforms as transforms import torch.nn as nn from PIL import Image import numpy as np import matplotlib.pyplot as plt device = torch.device("cuda" if torch.cuda.is_available() else "cpu") def warp_image(tensor_img, theta_warp, crop_size=112): # applies affine transform theta to image and crops it theta_warp = torch.Tensor(theta_warp).unsqueeze(0).to(device) grid = F.affine_grid(theta_warp, tensor_img.size()) img_warped = F.grid_sample(tensor_img, grid) img_cropped = img_warped[:,:,0:crop_size, 0:crop_size] return(img_cropped) def normalize_transforms(tfm, W,H): # normalizes affine transform from cv2 for pytorch tfm_t = np.concatenate((tfm, np.array([[0,0,1]])), axis = 0) transforms = np.linalg.inv(tfm_t)[0:2,:] transforms[0,0] = transforms[0,0] transforms[0,1] = transforms[0,1]*H/W transforms[0,2] = transforms[0,2]*2/W + transforms[0,0] + transforms[0,1] - 1 transforms[1,0] = transforms[1,0]*W/H transforms[1,1] = transforms[1,1] transforms[1,2] = transforms[1,2]*2/H + transforms[1,0] + transforms[1,1] - 1 return transforms def l2_norm(input, axis = 1): # normalizes input with respect to second norm norm = torch.norm(input, 2, axis, True) output = torch.div(input, norm) return output def de_preprocess(tensor): # normalize images from [-1,1] to [0,1] return tensor * 0.5 + 0.5 # normalize image to [-1,1] normalize = transforms.Compose([ transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5]) ]) def normalize_batch(imgs_tensor): normalized_imgs = torch.empty_like(imgs_tensor) for i, img_ten in enumerate(imgs_tensor): normalized_imgs[i] = normalize(img_ten) return normalized_imgs def resize2d(img, size): # resizes image return (F.adaptive_avg_pool2d(img, size)) class face_extractor(nn.Module): def __init__(self, crop_size = 112, warp = False, theta_warp = None): super(face_extractor, self).__init__() self.crop_size = crop_size self.warp = warp self.theta_warp = theta_warp def forward(self, input): if self.warp: assert(input.shape[0] == 1) input = warp_image(input, self.theta_warp, self.crop_size) return input class feature_extractor(nn.Module): def __init__(self, model, crop_size = 112, tta = True, warp = False, theta_warp = None): super(feature_extractor, self).__init__() self.model = model self.crop_size = crop_size self.tta = tta self.warp = warp self.theta_warp = theta_warp self.model = model def forward(self, input): if self.warp: assert(input.shape[0] == 1) input = warp_image(input, self.theta_warp, self.crop_size) batch_normalized = normalize_batch(input) batch_flipped = torch.flip(batch_normalized, [3]) # extract features self.model.eval() # set to evaluation mode if self.tta: embed = self.model(batch_normalized) + self.model(batch_flipped) features = l2_norm(embed) else: features = l2_norm(self.model(batch_normalized)) return features