Lowkey_V_0.1 / util /feature_extraction_utils.py
SHREYSH's picture
Upload 29 files
2c62202 verified
raw
history blame
3.36 kB
# Helper function for extracting features from pre-trained models
import torch
import torch.nn.functional as F
import torchvision.transforms as transforms
import torch.nn as nn
from PIL import Image
import numpy as np
import matplotlib.pyplot as plt
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
def warp_image(tensor_img, theta_warp, crop_size=112):
# applies affine transform theta to image and crops it
theta_warp = torch.Tensor(theta_warp).unsqueeze(0).to(device)
grid = F.affine_grid(theta_warp, tensor_img.size())
img_warped = F.grid_sample(tensor_img, grid)
img_cropped = img_warped[:,:,0:crop_size, 0:crop_size]
return(img_cropped)
def normalize_transforms(tfm, W,H):
# normalizes affine transform from cv2 for pytorch
tfm_t = np.concatenate((tfm, np.array([[0,0,1]])), axis = 0)
transforms = np.linalg.inv(tfm_t)[0:2,:]
transforms[0,0] = transforms[0,0]
transforms[0,1] = transforms[0,1]*H/W
transforms[0,2] = transforms[0,2]*2/W + transforms[0,0] + transforms[0,1] - 1
transforms[1,0] = transforms[1,0]*W/H
transforms[1,1] = transforms[1,1]
transforms[1,2] = transforms[1,2]*2/H + transforms[1,0] + transforms[1,1] - 1
return transforms
def l2_norm(input, axis = 1):
# normalizes input with respect to second norm
norm = torch.norm(input, 2, axis, True)
output = torch.div(input, norm)
return output
def de_preprocess(tensor):
# normalize images from [-1,1] to [0,1]
return tensor * 0.5 + 0.5
# normalize image to [-1,1]
normalize = transforms.Compose([
transforms.Normalize([0.5, 0.5, 0.5], [0.5, 0.5, 0.5])
])
def normalize_batch(imgs_tensor):
normalized_imgs = torch.empty_like(imgs_tensor)
for i, img_ten in enumerate(imgs_tensor):
normalized_imgs[i] = normalize(img_ten)
return normalized_imgs
def resize2d(img, size):
# resizes image
return (F.adaptive_avg_pool2d(img, size))
class face_extractor(nn.Module):
def __init__(self, crop_size = 112, warp = False, theta_warp = None):
super(face_extractor, self).__init__()
self.crop_size = crop_size
self.warp = warp
self.theta_warp = theta_warp
def forward(self, input):
if self.warp:
assert(input.shape[0] == 1)
input = warp_image(input, self.theta_warp, self.crop_size)
return input
class feature_extractor(nn.Module):
def __init__(self, model, crop_size = 112, tta = True, warp = False, theta_warp = None):
super(feature_extractor, self).__init__()
self.model = model
self.crop_size = crop_size
self.tta = tta
self.warp = warp
self.theta_warp = theta_warp
self.model = model
def forward(self, input):
if self.warp:
assert(input.shape[0] == 1)
input = warp_image(input, self.theta_warp, self.crop_size)
batch_normalized = normalize_batch(input)
batch_flipped = torch.flip(batch_normalized, [3])
# extract features
self.model.eval() # set to evaluation mode
if self.tta:
embed = self.model(batch_normalized) + self.model(batch_flipped)
features = l2_norm(embed)
else:
features = l2_norm(self.model(batch_normalized))
return features