Spaces:
Sleeping
Sleeping
Preparing submission
Browse files
tasks/image.py
CHANGED
|
@@ -12,6 +12,13 @@ from .utils.emissions import tracker, clean_emissions_data, get_space_info
|
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
load_dotenv()
|
| 14 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 15 |
router = APIRouter()
|
| 16 |
|
| 17 |
DESCRIPTION = "Frugal Object Detector for forest fires"
|
|
@@ -97,18 +104,13 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
| 97 |
# YOUR MODEL INFERENCE CODE HERE
|
| 98 |
# Update the code below to replace the random baseline with your model inference
|
| 99 |
#--------------------------------------------------------------------------------------------
|
| 100 |
-
# Import strict minimum
|
| 101 |
-
from pathlib import Path
|
| 102 |
-
from ultralytics import YOLO
|
| 103 |
-
from torch import device
|
| 104 |
-
from torch.cuda import is_available
|
| 105 |
|
| 106 |
THRESHOLD = 0.18
|
| 107 |
|
| 108 |
# Load model
|
| 109 |
model_path = Path("tasks", "models")
|
| 110 |
-
model_name = "
|
| 111 |
-
|
| 112 |
model = YOLO(Path(model_path, model_name), task="detect")
|
| 113 |
device_name = device("cuda" if is_available() else "cpu")
|
| 114 |
IMGSIZE = 1280
|
|
@@ -118,7 +120,7 @@ async def evaluate_image(request: ImageEvaluationRequest):
|
|
| 118 |
pred_boxes = []
|
| 119 |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
| 120 |
|
| 121 |
-
|
| 122 |
for example in test_dataset:
|
| 123 |
# Parse true annotation (YOLO format: class_id x_center y_center width height)
|
| 124 |
annotation = example.get("annotations", "").strip()
|
|
|
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
load_dotenv()
|
| 14 |
|
| 15 |
+
# Dependencies for inference
|
| 16 |
+
import logging
|
| 17 |
+
from pathlib import Path
|
| 18 |
+
from ultralytics import YOLO
|
| 19 |
+
from torch import device
|
| 20 |
+
from torch.cuda import is_available
|
| 21 |
+
|
| 22 |
router = APIRouter()
|
| 23 |
|
| 24 |
DESCRIPTION = "Frugal Object Detector for forest fires"
|
|
|
|
| 104 |
# YOUR MODEL INFERENCE CODE HERE
|
| 105 |
# Update the code below to replace the random baseline with your model inference
|
| 106 |
#--------------------------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 107 |
|
| 108 |
THRESHOLD = 0.18
|
| 109 |
|
| 110 |
# Load model
|
| 111 |
model_path = Path("tasks", "models")
|
| 112 |
+
model_name = "best_gpu_fp16.pt"
|
| 113 |
+
logging.info(f"Loading model {model_name}")
|
| 114 |
model = YOLO(Path(model_path, model_name), task="detect")
|
| 115 |
device_name = device("cuda" if is_available() else "cpu")
|
| 116 |
IMGSIZE = 1280
|
|
|
|
| 120 |
pred_boxes = []
|
| 121 |
true_boxes_list = [] # List of lists, each inner list contains boxes for one image
|
| 122 |
|
| 123 |
+
logging.info(f"Inference start on device: {device_name}")
|
| 124 |
for example in test_dataset:
|
| 125 |
# Parse true annotation (YOLO format: class_id x_center y_center width height)
|
| 126 |
annotation = example.get("annotations", "").strip()
|
tasks/models/{pruned_fp16.pt → best_gpu_fp16.pt}
RENAMED
|
File without changes
|
tasks/models/cpu_fp16.onnx
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:df234f73cd50dcb745021703a067a350e7b1ff192cf5d9a1f67af3527fa9f0d3
|
| 3 |
+
size 5322682
|