Spaces:
Sleeping
Sleeping
| import time | |
| import os | |
| import streamlit as st | |
| from langchain_community.vectorstores import FAISS | |
| from langchain_community.embeddings import HuggingFaceEmbeddings | |
| from langchain.prompts import PromptTemplate | |
| from langchain.memory import ConversationBufferWindowMemory | |
| from langchain.chains import ConversationalRetrievalChain | |
| from langchain_together import Together | |
| from footer import footer | |
| # Set the Streamlit page configuration and theme | |
| st.set_page_config(page_title="GST Law Guide", layout="centered") | |
| # Display the logo image | |
| col1, col2, col3 = st.columns([1, 30, 1]) | |
| with col2: | |
| st.image("images_banner.png", use_column_width=True) | |
| def hide_hamburger_menu(): | |
| st.markdown(""" | |
| <style> | |
| #MainMenu {visibility: hidden;} | |
| footer {visibility: hidden;} | |
| </style> | |
| """, unsafe_allow_html=True) | |
| hide_hamburger_menu() | |
| # Initialize session state for messages and memory | |
| if "messages" not in st.session_state: | |
| st.session_state.messages = [] | |
| if "memory" not in st.session_state: | |
| st.session_state.memory = ConversationBufferWindowMemory(k=2, memory_key="chat_history", return_messages=True) | |
| def load_embeddings(): | |
| """Load and cache the embeddings model.""" | |
| return HuggingFaceEmbeddings(model_name="law-ai/InLegalBERT") | |
| embeddings = load_embeddings() | |
| db = FAISS.load_local("ipc_embed_db", embeddings, allow_dangerous_deserialization=True) | |
| db_retriever = db.as_retriever(search_type="similarity", search_kwargs={"k": 3}) | |
| prompt_template = """ | |
| <s>[INST] | |
| As a legal chatbot specializing in the Indian GST Law, you are tasked with providing highly accurate and contextually appropriate responses. Ensure your answers meet these criteria: | |
| - Respond in a bullet-point format to clearly delineate distinct aspects of the legal query. | |
| - Each point should accurately reflect the breadth of the legal provision in question, avoiding over-specificity unless directly relevant to the user's query. | |
| - Clarify the general applicability of the legal rules or sections mentioned, highlighting any common misconceptions or frequently misunderstood aspects. | |
| - Limit responses to essential information that directly addresses the user's question, providing concise yet comprehensive explanations. | |
| - Avoid assuming specific contexts or details not provided in the query, focusing on delivering universally applicable legal interpretations unless otherwise specified. | |
| - Conclude with a brief summary that captures the essence of the legal discussion and corrects any common misinterpretations related to the topic. | |
| CONTEXT: {context} | |
| CHAT HISTORY: {chat_history} | |
| QUESTION: {question} | |
| ANSWER: | |
| - [Detail the first key aspect of the law, ensuring it reflects general application] | |
| - [Provide a concise explanation of how the law is typically interpreted or applied] | |
| - [Correct a common misconception or clarify a frequently misunderstood aspect] | |
| - [Detail any exceptions to the general rule, if applicable] | |
| - [Include any additional relevant information that directly relates to the user's query] | |
| </s>[INST] | |
| """ | |
| prompt = PromptTemplate(template=prompt_template, | |
| input_variables=['context', 'question', 'chat_history']) | |
| api_key = os.getenv('TOGETHER_API_KEY') | |
| llm = Together(model="mistralai/Mixtral-8x22B-Instruct-v0.1", temperature=0.5, max_tokens=1024, together_api_key=api_key) | |
| qa = ConversationalRetrievalChain.from_llm(llm=llm, memory=st.session_state.memory, retriever=db_retriever, combine_docs_chain_kwargs={'prompt': prompt}) | |
| def extract_answer(full_response): | |
| """Extracts the answer from the LLM's full response by removing the instructional text.""" | |
| answer_start = full_response.find("Response:") | |
| if answer_start != -1: | |
| answer_start += len("Response:") | |
| answer_end = len(full_response) | |
| return full_response[answer_start:answer_end].strip() | |
| return full_response | |
| def reset_conversation(): | |
| st.session_state.messages = [] | |
| st.session_state.memory.clear() | |
| for message in st.session_state.messages: | |
| with st.chat_message(message["role"]): | |
| st.write(message["content"]) | |
| input_prompt = st.chat_input("Ask something...") | |
| if input_prompt: | |
| with st.chat_message("user"): | |
| st.markdown(f"**You:** {input_prompt}") | |
| st.session_state.messages.append({"role": "user", "content": input_prompt}) | |
| with st.chat_message("assistant"): | |
| with st.spinner("Thinking 💡..."): | |
| result = qa.invoke(input=input_prompt) | |
| message_placeholder = st.empty() | |
| answer = extract_answer(result["answer"]) | |
| # Initialize the response message | |
| full_response = "⚠️ **_Gentle reminder: We generally ensure precise information, but do double-check._** \n\n\n" | |
| for chunk in answer: | |
| # Simulate typing by appending chunks of the response over time | |
| full_response += chunk | |
| time.sleep(0.02) # Adjust the sleep time to control the "typing" speed | |
| message_placeholder.markdown(full_response + " |", unsafe_allow_html=True) | |
| st.session_state.messages.append({"role": "assistant", "content": answer}) | |
| if st.button('🗑️ Reset All Chat', on_click=reset_conversation): | |
| st.experimental_rerun() | |
| # Define the CSS to style the footer | |
| footer() | |