update app
Browse files
app.py
CHANGED
|
@@ -1,16 +1,15 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
|
|
|
| 4 |
import os
|
| 5 |
import tempfile
|
| 6 |
import spaces
|
|
|
|
| 7 |
from typing import Iterable
|
| 8 |
from gradio.themes import Soft
|
| 9 |
from gradio.themes.utils import colors, fonts, sizes
|
| 10 |
|
| 11 |
-
# ==========================================
|
| 12 |
-
# 1. Theme Definition (Orange Red)
|
| 13 |
-
# ==========================================
|
| 14 |
colors.orange_red = colors.Color(
|
| 15 |
name="orange_red",
|
| 16 |
c50="#FFF0E5",
|
|
@@ -31,7 +30,7 @@ class OrangeRedTheme(Soft):
|
|
| 31 |
self,
|
| 32 |
*,
|
| 33 |
primary_hue: colors.Color | str = colors.gray,
|
| 34 |
-
secondary_hue: colors.Color | str = colors.orange_red,
|
| 35 |
neutral_hue: colors.Color | str = colors.slate,
|
| 36 |
text_size: sizes.Size | str = sizes.text_lg,
|
| 37 |
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
|
@@ -55,28 +54,41 @@ class OrangeRedTheme(Soft):
|
|
| 55 |
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 56 |
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 57 |
button_primary_text_color="white",
|
|
|
|
| 58 |
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 59 |
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
block_title_text_weight="600",
|
| 61 |
block_border_width="3px",
|
| 62 |
block_shadow="*shadow_drop_lg",
|
| 63 |
button_primary_shadow="*shadow_drop_lg",
|
| 64 |
button_large_padding="11px",
|
|
|
|
|
|
|
| 65 |
)
|
| 66 |
|
| 67 |
orange_red_theme = OrangeRedTheme()
|
| 68 |
|
| 69 |
-
# ==========================================
|
| 70 |
-
# 2. Model Loading
|
| 71 |
-
# ==========================================
|
| 72 |
try:
|
| 73 |
from sam_audio import SAMAudio, SAMAudioProcessor
|
| 74 |
except ImportError as e:
|
| 75 |
-
print(f"Warning: 'sam_audio' library not found. Error: {e}")
|
| 76 |
|
| 77 |
MODEL_ID = "facebook/sam-audio-large"
|
| 78 |
-
|
|
|
|
|
|
|
| 79 |
|
|
|
|
| 80 |
print(f"Loading {MODEL_ID} on {device}...")
|
| 81 |
|
| 82 |
model = None
|
|
@@ -89,67 +101,173 @@ try:
|
|
| 89 |
except Exception as e:
|
| 90 |
print(f"β Error loading SAM-Audio: {e}")
|
| 91 |
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
def save_audio(tensor, sample_rate):
|
| 96 |
"""Saves a tensor to a temporary WAV file and returns path."""
|
| 97 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
| 98 |
tensor = tensor.cpu()
|
| 99 |
-
# torchaudio expects [channels, time]
|
| 100 |
if tensor.dim() == 1:
|
| 101 |
tensor = tensor.unsqueeze(0)
|
| 102 |
torchaudio.save(tmp.name, tensor, sample_rate)
|
| 103 |
return tmp.name
|
| 104 |
|
| 105 |
@spaces.GPU(duration=120)
|
| 106 |
-
def process_audio(file_path, text_prompt,
|
| 107 |
global model, processor
|
| 108 |
|
| 109 |
if model is None or processor is None:
|
| 110 |
-
return None, None, "β Model not loaded correctly."
|
|
|
|
|
|
|
| 111 |
|
| 112 |
if not file_path:
|
| 113 |
-
return None, None, "β Please upload an audio file."
|
| 114 |
if not text_prompt or not text_prompt.strip():
|
| 115 |
return None, None, "β Please enter a text prompt."
|
| 116 |
|
| 117 |
try:
|
| 118 |
-
progress(0.
|
| 119 |
-
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
|
| 142 |
except Exception as e:
|
| 143 |
import traceback
|
| 144 |
traceback.print_exc()
|
| 145 |
return None, None, f"β Error: {str(e)}"
|
| 146 |
|
| 147 |
-
# ==========================================
|
| 148 |
-
# 4. Gradio Interface
|
| 149 |
-
# ==========================================
|
| 150 |
css = """
|
| 151 |
#main-title h1 {font-size: 2.4em}
|
| 152 |
-
#col-container {max-width: 1000px; margin: 0 auto;}
|
| 153 |
"""
|
| 154 |
|
| 155 |
with gr.Blocks() as demo:
|
|
@@ -158,40 +276,37 @@ with gr.Blocks() as demo:
|
|
| 158 |
|
| 159 |
with gr.Column(elem_id="col-container"):
|
| 160 |
with gr.Row():
|
| 161 |
-
# Left Column: Inputs
|
| 162 |
with gr.Column(scale=1):
|
| 163 |
input_file = gr.Audio(label="Input Audio", type="filepath")
|
| 164 |
text_prompt = gr.Textbox(label="Sound to Isolate", placeholder="e.g., 'A man speaking', 'Bird chirping'")
|
| 165 |
-
|
| 166 |
with gr.Accordion("Advanced Settings", open=False):
|
| 167 |
-
|
| 168 |
-
minimum=
|
| 169 |
-
label="
|
| 170 |
-
info="
|
| 171 |
)
|
| 172 |
-
|
| 173 |
run_btn = gr.Button("Segment Audio", variant="primary")
|
| 174 |
|
| 175 |
-
# Right Column: Outputs
|
| 176 |
with gr.Column(scale=1):
|
| 177 |
output_target = gr.Audio(label="Isolated Sound (Target)", type="filepath")
|
| 178 |
output_residual = gr.Audio(label="Background (Residual)", type="filepath")
|
| 179 |
-
status_out = gr.Textbox(label="Status", interactive=False, show_label=True, lines=
|
| 180 |
|
| 181 |
-
# Examples
|
| 182 |
gr.Examples(
|
| 183 |
examples=[
|
| 184 |
-
["example_audio/speech.mp3", "Music"],
|
| 185 |
-
["example_audio/song.mp3", "Drum"],
|
| 186 |
-
["example_audio/song2.mp3", "
|
| 187 |
],
|
| 188 |
-
inputs=[input_file, text_prompt],
|
| 189 |
label="Audio Examples"
|
| 190 |
)
|
| 191 |
|
| 192 |
run_btn.click(
|
| 193 |
fn=process_audio,
|
| 194 |
-
inputs=[input_file, text_prompt,
|
| 195 |
outputs=[output_target, output_residual, status_out]
|
| 196 |
)
|
| 197 |
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import torch
|
| 3 |
import torchaudio
|
| 4 |
+
import numpy as np
|
| 5 |
import os
|
| 6 |
import tempfile
|
| 7 |
import spaces
|
| 8 |
+
|
| 9 |
from typing import Iterable
|
| 10 |
from gradio.themes import Soft
|
| 11 |
from gradio.themes.utils import colors, fonts, sizes
|
| 12 |
|
|
|
|
|
|
|
|
|
|
| 13 |
colors.orange_red = colors.Color(
|
| 14 |
name="orange_red",
|
| 15 |
c50="#FFF0E5",
|
|
|
|
| 30 |
self,
|
| 31 |
*,
|
| 32 |
primary_hue: colors.Color | str = colors.gray,
|
| 33 |
+
secondary_hue: colors.Color | str = colors.orange_red, # Use the new color
|
| 34 |
neutral_hue: colors.Color | str = colors.slate,
|
| 35 |
text_size: sizes.Size | str = sizes.text_lg,
|
| 36 |
font: fonts.Font | str | Iterable[fonts.Font | str] = (
|
|
|
|
| 54 |
body_background_fill="linear-gradient(135deg, *primary_200, *primary_100)",
|
| 55 |
body_background_fill_dark="linear-gradient(135deg, *primary_900, *primary_800)",
|
| 56 |
button_primary_text_color="white",
|
| 57 |
+
button_primary_text_color_hover="white",
|
| 58 |
button_primary_background_fill="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 59 |
button_primary_background_fill_hover="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 60 |
+
button_primary_background_fill_dark="linear-gradient(90deg, *secondary_600, *secondary_700)",
|
| 61 |
+
button_primary_background_fill_hover_dark="linear-gradient(90deg, *secondary_500, *secondary_600)",
|
| 62 |
+
button_secondary_text_color="black",
|
| 63 |
+
button_secondary_text_color_hover="white",
|
| 64 |
+
button_secondary_background_fill="linear-gradient(90deg, *primary_300, *primary_300)",
|
| 65 |
+
button_secondary_background_fill_hover="linear-gradient(90deg, *primary_400, *primary_400)",
|
| 66 |
+
button_secondary_background_fill_dark="linear-gradient(90deg, *primary_500, *primary_600)",
|
| 67 |
+
button_secondary_background_fill_hover_dark="linear-gradient(90deg, *primary_500, *primary_500)",
|
| 68 |
+
slider_color="*secondary_500",
|
| 69 |
+
slider_color_dark="*secondary_600",
|
| 70 |
block_title_text_weight="600",
|
| 71 |
block_border_width="3px",
|
| 72 |
block_shadow="*shadow_drop_lg",
|
| 73 |
button_primary_shadow="*shadow_drop_lg",
|
| 74 |
button_large_padding="11px",
|
| 75 |
+
color_accent_soft="*primary_100",
|
| 76 |
+
block_label_background_fill="*primary_200",
|
| 77 |
)
|
| 78 |
|
| 79 |
orange_red_theme = OrangeRedTheme()
|
| 80 |
|
|
|
|
|
|
|
|
|
|
| 81 |
try:
|
| 82 |
from sam_audio import SAMAudio, SAMAudioProcessor
|
| 83 |
except ImportError as e:
|
| 84 |
+
print(f"Warning: 'sam_audio' library not found. Please install it to use this app. Error: {e}")
|
| 85 |
|
| 86 |
MODEL_ID = "facebook/sam-audio-large"
|
| 87 |
+
DEFAULT_CHUNK_DURATION = 30.0
|
| 88 |
+
OVERLAP_DURATION = 2.0
|
| 89 |
+
MAX_DURATION_WITHOUT_CHUNKING = 30.0
|
| 90 |
|
| 91 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 92 |
print(f"Loading {MODEL_ID} on {device}...")
|
| 93 |
|
| 94 |
model = None
|
|
|
|
| 101 |
except Exception as e:
|
| 102 |
print(f"β Error loading SAM-Audio: {e}")
|
| 103 |
|
| 104 |
+
def load_audio(file_path):
|
| 105 |
+
"""Load audio from file (supports both audio and video files)."""
|
| 106 |
+
waveform, sample_rate = torchaudio.load(file_path)
|
| 107 |
+
if waveform.shape[0] > 1:
|
| 108 |
+
waveform = waveform.mean(dim=0, keepdim=True)
|
| 109 |
+
return waveform, sample_rate
|
| 110 |
+
|
| 111 |
+
def split_audio_into_chunks(waveform, sample_rate, chunk_duration, overlap_duration):
|
| 112 |
+
"""Split audio waveform into overlapping chunks."""
|
| 113 |
+
chunk_samples = int(chunk_duration * sample_rate)
|
| 114 |
+
overlap_samples = int(overlap_duration * sample_rate)
|
| 115 |
+
stride = chunk_samples - overlap_samples
|
| 116 |
+
|
| 117 |
+
chunks = []
|
| 118 |
+
total_samples = waveform.shape[1]
|
| 119 |
+
|
| 120 |
+
if total_samples <= chunk_samples:
|
| 121 |
+
return [waveform]
|
| 122 |
+
|
| 123 |
+
start = 0
|
| 124 |
+
while start < total_samples:
|
| 125 |
+
end = min(start + chunk_samples, total_samples)
|
| 126 |
+
chunk = waveform[:, start:end]
|
| 127 |
+
chunks.append(chunk)
|
| 128 |
+
if end >= total_samples:
|
| 129 |
+
break
|
| 130 |
+
start += stride
|
| 131 |
+
|
| 132 |
+
return chunks
|
| 133 |
+
|
| 134 |
+
def merge_chunks_with_crossfade(chunks, sample_rate, overlap_duration):
|
| 135 |
+
"""Merge audio chunks with crossfade on overlapping regions."""
|
| 136 |
+
if len(chunks) == 1:
|
| 137 |
+
chunk = chunks[0]
|
| 138 |
+
if chunk.dim() == 1:
|
| 139 |
+
chunk = chunk.unsqueeze(0)
|
| 140 |
+
return chunk
|
| 141 |
+
|
| 142 |
+
overlap_samples = int(overlap_duration * sample_rate)
|
| 143 |
+
|
| 144 |
+
processed_chunks = []
|
| 145 |
+
for chunk in chunks:
|
| 146 |
+
if chunk.dim() == 1:
|
| 147 |
+
chunk = chunk.unsqueeze(0)
|
| 148 |
+
processed_chunks.append(chunk)
|
| 149 |
+
|
| 150 |
+
result = processed_chunks[0]
|
| 151 |
+
|
| 152 |
+
for i in range(1, len(processed_chunks)):
|
| 153 |
+
prev_chunk = result
|
| 154 |
+
next_chunk = processed_chunks[i]
|
| 155 |
+
|
| 156 |
+
actual_overlap = min(overlap_samples, prev_chunk.shape[1], next_chunk.shape[1])
|
| 157 |
+
|
| 158 |
+
if actual_overlap <= 0:
|
| 159 |
+
result = torch.cat([prev_chunk, next_chunk], dim=1)
|
| 160 |
+
continue
|
| 161 |
+
|
| 162 |
+
fade_out = torch.linspace(1.0, 0.0, actual_overlap).to(prev_chunk.device)
|
| 163 |
+
fade_in = torch.linspace(0.0, 1.0, actual_overlap).to(next_chunk.device)
|
| 164 |
+
|
| 165 |
+
prev_overlap = prev_chunk[:, -actual_overlap:]
|
| 166 |
+
next_overlap = next_chunk[:, :actual_overlap]
|
| 167 |
+
|
| 168 |
+
crossfaded = prev_overlap * fade_out + next_overlap * fade_in
|
| 169 |
+
|
| 170 |
+
result = torch.cat([
|
| 171 |
+
prev_chunk[:, :-actual_overlap],
|
| 172 |
+
crossfaded,
|
| 173 |
+
next_chunk[:, actual_overlap:]
|
| 174 |
+
], dim=1)
|
| 175 |
+
|
| 176 |
+
return result
|
| 177 |
+
|
| 178 |
def save_audio(tensor, sample_rate):
|
| 179 |
"""Saves a tensor to a temporary WAV file and returns path."""
|
| 180 |
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
| 181 |
tensor = tensor.cpu()
|
|
|
|
| 182 |
if tensor.dim() == 1:
|
| 183 |
tensor = tensor.unsqueeze(0)
|
| 184 |
torchaudio.save(tmp.name, tensor, sample_rate)
|
| 185 |
return tmp.name
|
| 186 |
|
| 187 |
@spaces.GPU(duration=120)
|
| 188 |
+
def process_audio(file_path, text_prompt, chunk_duration_val, progress=gr.Progress()):
|
| 189 |
global model, processor
|
| 190 |
|
| 191 |
if model is None or processor is None:
|
| 192 |
+
return None, None, "β Model not loaded correctly. Check logs."
|
| 193 |
+
|
| 194 |
+
progress(0.05, desc="Checking inputs...")
|
| 195 |
|
| 196 |
if not file_path:
|
| 197 |
+
return None, None, "β Please upload an audio or video file."
|
| 198 |
if not text_prompt or not text_prompt.strip():
|
| 199 |
return None, None, "β Please enter a text prompt."
|
| 200 |
|
| 201 |
try:
|
| 202 |
+
progress(0.15, desc="Loading audio...")
|
| 203 |
+
waveform, sample_rate = load_audio(file_path)
|
| 204 |
+
duration = waveform.shape[1] / sample_rate
|
| 205 |
+
|
| 206 |
+
c_dur = chunk_duration_val if chunk_duration_val else DEFAULT_CHUNK_DURATION
|
| 207 |
+
use_chunking = duration > MAX_DURATION_WITHOUT_CHUNKING
|
| 208 |
+
|
| 209 |
+
if use_chunking:
|
| 210 |
+
progress(0.2, desc=f"Audio is {duration:.1f}s, splitting into chunks...")
|
| 211 |
+
chunks = split_audio_into_chunks(waveform, sample_rate, c_dur, OVERLAP_DURATION)
|
| 212 |
+
num_chunks = len(chunks)
|
| 213 |
+
|
| 214 |
+
target_chunks = []
|
| 215 |
+
residual_chunks = []
|
| 216 |
+
|
| 217 |
+
for i, chunk in enumerate(chunks):
|
| 218 |
+
chunk_progress = 0.2 + (i / num_chunks) * 0.6
|
| 219 |
+
progress(chunk_progress, desc=f"Processing chunk {i+1}/{num_chunks}...")
|
| 220 |
+
|
| 221 |
+
with tempfile.NamedTemporaryFile(suffix=".wav", delete=False) as tmp:
|
| 222 |
+
torchaudio.save(tmp.name, chunk, sample_rate)
|
| 223 |
+
chunk_path = tmp.name
|
| 224 |
+
|
| 225 |
+
try:
|
| 226 |
+
inputs = processor(audios=[chunk_path], descriptions=[text_prompt.strip()]).to(device)
|
| 227 |
+
|
| 228 |
+
with torch.inference_mode():
|
| 229 |
+
result = model.separate(inputs, predict_spans=False, reranking_candidates=1)
|
| 230 |
+
|
| 231 |
+
target_chunks.append(result.target[0].detach().cpu())
|
| 232 |
+
residual_chunks.append(result.residual[0].detach().cpu())
|
| 233 |
+
finally:
|
| 234 |
+
if os.path.exists(chunk_path):
|
| 235 |
+
os.unlink(chunk_path)
|
| 236 |
+
|
| 237 |
+
progress(0.85, desc="Merging chunks...")
|
| 238 |
+
target_merged = merge_chunks_with_crossfade(target_chunks, sample_rate, OVERLAP_DURATION)
|
| 239 |
+
residual_merged = merge_chunks_with_crossfade(residual_chunks, sample_rate, OVERLAP_DURATION)
|
| 240 |
+
|
| 241 |
+
progress(0.95, desc="Saving results...")
|
| 242 |
+
target_path = save_audio(target_merged, sample_rate)
|
| 243 |
+
residual_path = save_audio(residual_merged, sample_rate)
|
| 244 |
+
|
| 245 |
+
progress(1.0, desc="Done!")
|
| 246 |
+
return target_path, residual_path, f"β
Isolated '{text_prompt}' ({num_chunks} chunks)"
|
| 247 |
+
|
| 248 |
+
else:
|
| 249 |
+
progress(0.3, desc="Processing audio...")
|
| 250 |
+
inputs = processor(audios=[file_path], descriptions=[text_prompt.strip()]).to(device)
|
| 251 |
+
|
| 252 |
+
progress(0.6, desc="Separating sounds...")
|
| 253 |
+
with torch.inference_mode():
|
| 254 |
+
result = model.separate(inputs, predict_spans=False, reranking_candidates=1)
|
| 255 |
+
|
| 256 |
+
progress(0.9, desc="Saving results...")
|
| 257 |
+
sr = processor.audio_sampling_rate
|
| 258 |
+
target_path = save_audio(result.target[0].unsqueeze(0).cpu(), sr)
|
| 259 |
+
residual_path = save_audio(result.residual[0].unsqueeze(0).cpu(), sr)
|
| 260 |
+
|
| 261 |
+
progress(1.0, desc="Done!")
|
| 262 |
+
return target_path, residual_path, f"β
Isolated '{text_prompt}'"
|
| 263 |
|
| 264 |
except Exception as e:
|
| 265 |
import traceback
|
| 266 |
traceback.print_exc()
|
| 267 |
return None, None, f"β Error: {str(e)}"
|
| 268 |
|
|
|
|
|
|
|
|
|
|
| 269 |
css = """
|
| 270 |
#main-title h1 {font-size: 2.4em}
|
|
|
|
| 271 |
"""
|
| 272 |
|
| 273 |
with gr.Blocks() as demo:
|
|
|
|
| 276 |
|
| 277 |
with gr.Column(elem_id="col-container"):
|
| 278 |
with gr.Row():
|
|
|
|
| 279 |
with gr.Column(scale=1):
|
| 280 |
input_file = gr.Audio(label="Input Audio", type="filepath")
|
| 281 |
text_prompt = gr.Textbox(label="Sound to Isolate", placeholder="e.g., 'A man speaking', 'Bird chirping'")
|
| 282 |
+
|
| 283 |
with gr.Accordion("Advanced Settings", open=False):
|
| 284 |
+
chunk_duration_slider = gr.Slider(
|
| 285 |
+
minimum=10, maximum=60, value=30, step=5,
|
| 286 |
+
label="Chunk Duration (seconds)",
|
| 287 |
+
info="Processing long audio in chunks prevents out-of-memory errors."
|
| 288 |
)
|
| 289 |
+
|
| 290 |
run_btn = gr.Button("Segment Audio", variant="primary")
|
| 291 |
|
|
|
|
| 292 |
with gr.Column(scale=1):
|
| 293 |
output_target = gr.Audio(label="Isolated Sound (Target)", type="filepath")
|
| 294 |
output_residual = gr.Audio(label="Background (Residual)", type="filepath")
|
| 295 |
+
status_out = gr.Textbox(label="Status", interactive=False, show_label=True, lines=6)
|
| 296 |
|
|
|
|
| 297 |
gr.Examples(
|
| 298 |
examples=[
|
| 299 |
+
["example_audio/speech.mp3", "Music", 30],
|
| 300 |
+
["example_audio/song.mp3", "Drum", 30],
|
| 301 |
+
["example_audio/song2.mp3", "Music", 30],
|
| 302 |
],
|
| 303 |
+
inputs=[input_file, text_prompt, chunk_duration_slider],
|
| 304 |
label="Audio Examples"
|
| 305 |
)
|
| 306 |
|
| 307 |
run_btn.click(
|
| 308 |
fn=process_audio,
|
| 309 |
+
inputs=[input_file, text_prompt, chunk_duration_slider],
|
| 310 |
outputs=[output_target, output_residual, status_out]
|
| 311 |
)
|
| 312 |
|