Spaces:
Running
on
Zero
Running
on
Zero
update app
Browse files
app.py
CHANGED
|
@@ -10,27 +10,22 @@ from typing import Optional, Tuple, Dict, Any, Iterable
|
|
| 10 |
from gradio.themes import Soft
|
| 11 |
from gradio.themes.utils import colors, fonts, sizes
|
| 12 |
|
| 13 |
-
# --- Model & Script Download ---
|
| 14 |
print("Downloading model snapshot to ensure all scripts are present...")
|
| 15 |
-
# Download the full model repo to ensure postprocessing.py is available locally
|
| 16 |
model_dir = snapshot_download(repo_id="nvidia/NVIDIA-Nemotron-Parse-v1.1")
|
| 17 |
print(f"Model downloaded to: {model_dir}")
|
| 18 |
|
| 19 |
-
# Add the model directory to sys.path so we can import postprocessing
|
| 20 |
sys.path.append(model_dir)
|
| 21 |
|
| 22 |
try:
|
| 23 |
from postprocessing import extract_classes_bboxes, transform_bbox_to_original, postprocess_text
|
| 24 |
-
print("
|
| 25 |
except ImportError as e:
|
| 26 |
-
print(f"
|
| 27 |
raise e
|
| 28 |
|
| 29 |
-
# --- Device Setup ---
|
| 30 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 31 |
print(f"Using device: {device}")
|
| 32 |
|
| 33 |
-
# --- Theme Definition ---
|
| 34 |
colors.steel_blue = colors.Color(
|
| 35 |
name="steel_blue",
|
| 36 |
c50="#EBF3F8",
|
|
@@ -97,7 +92,6 @@ css = """
|
|
| 97 |
#output-title h2 { font-size: 2.1em !important; }
|
| 98 |
"""
|
| 99 |
|
| 100 |
-
# --- Model Loading ---
|
| 101 |
print("Loading Model components...")
|
| 102 |
|
| 103 |
processor = AutoProcessor.from_pretrained(model_dir, trust_remote_code=True)
|
|
@@ -113,7 +107,7 @@ except Exception as e:
|
|
| 113 |
print(f"Warning: Could not load GenerationConfig: {e}. Using default.")
|
| 114 |
generation_config = GenerationConfig(max_new_tokens=4096)
|
| 115 |
|
| 116 |
-
print("
|
| 117 |
|
| 118 |
@spaces.GPU
|
| 119 |
def process_ocr_task(image):
|
|
@@ -130,7 +124,7 @@ def process_ocr_task(image):
|
|
| 130 |
if device.type == 'cuda':
|
| 131 |
inputs = {k: v.to(torch.bfloat16) if v.dtype == torch.float32 else v for k, v in inputs.items()}
|
| 132 |
|
| 133 |
-
print("
|
| 134 |
with torch.no_grad():
|
| 135 |
outputs = model.generate(
|
| 136 |
**inputs,
|
|
@@ -145,7 +139,6 @@ def process_ocr_task(image):
|
|
| 145 |
print(f"Error extracting boxes: {e}")
|
| 146 |
return generated_text, image
|
| 147 |
|
| 148 |
-
# Transform boxes to original image size
|
| 149 |
bboxes = [transform_bbox_to_original(bbox, image.width, image.height) for bbox in bboxes]
|
| 150 |
|
| 151 |
table_format = 'latex'
|
|
@@ -198,10 +191,9 @@ def process_ocr_task(image):
|
|
| 198 |
|
| 199 |
return final_output_text, result_image
|
| 200 |
|
| 201 |
-
# --- Gradio Interface ---
|
| 202 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 203 |
-
gr.Markdown("# **NVIDIA Nemotron Parse v1.1
|
| 204 |
-
gr.Markdown("Upload a document image to extract text, tables, and layout structures using NVIDIA's
|
| 205 |
|
| 206 |
with gr.Row():
|
| 207 |
with gr.Column(scale=1):
|
|
@@ -209,22 +201,15 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 209 |
submit_btn = gr.Button("Process Document", variant="primary")
|
| 210 |
|
| 211 |
examples = gr.Examples(
|
| 212 |
-
examples=["examples/1.jpg"],
|
| 213 |
inputs=image_input,
|
| 214 |
label="Examples"
|
| 215 |
)
|
| 216 |
|
| 217 |
with gr.Column(scale=2):
|
| 218 |
-
output_text = gr.Textbox(label="Parsed Content (Markdown/LaTeX)", lines=
|
| 219 |
output_image = gr.Image(label="Detected Layout & Bounding Boxes", type="pil")
|
| 220 |
|
| 221 |
-
with gr.Accordion("Technical Details", open=False):
|
| 222 |
-
gr.Markdown("""
|
| 223 |
-
**Model:** [nvidia/NVIDIA-Nemotron-Parse-v1.1](https://huggingface.co/nvidia/NVIDIA-Nemotron-Parse-v1.1)
|
| 224 |
-
**Architecture:** Llama-3-Vila based.
|
| 225 |
-
**Capabilities:** High-accuracy OCR, Table extraction (to LaTeX/HTML), Figure detection.
|
| 226 |
-
""")
|
| 227 |
-
|
| 228 |
submit_btn.click(
|
| 229 |
fn=process_ocr_task,
|
| 230 |
inputs=[image_input],
|
|
@@ -232,4 +217,4 @@ with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
|
| 232 |
)
|
| 233 |
|
| 234 |
if __name__ == "__main__":
|
| 235 |
-
demo.queue(max_size=
|
|
|
|
| 10 |
from gradio.themes import Soft
|
| 11 |
from gradio.themes.utils import colors, fonts, sizes
|
| 12 |
|
|
|
|
| 13 |
print("Downloading model snapshot to ensure all scripts are present...")
|
|
|
|
| 14 |
model_dir = snapshot_download(repo_id="nvidia/NVIDIA-Nemotron-Parse-v1.1")
|
| 15 |
print(f"Model downloaded to: {model_dir}")
|
| 16 |
|
|
|
|
| 17 |
sys.path.append(model_dir)
|
| 18 |
|
| 19 |
try:
|
| 20 |
from postprocessing import extract_classes_bboxes, transform_bbox_to_original, postprocess_text
|
| 21 |
+
print("Successfully imported postprocessing functions.")
|
| 22 |
except ImportError as e:
|
| 23 |
+
print(f"Error importing postprocessing: {e}")
|
| 24 |
raise e
|
| 25 |
|
|
|
|
| 26 |
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 27 |
print(f"Using device: {device}")
|
| 28 |
|
|
|
|
| 29 |
colors.steel_blue = colors.Color(
|
| 30 |
name="steel_blue",
|
| 31 |
c50="#EBF3F8",
|
|
|
|
| 92 |
#output-title h2 { font-size: 2.1em !important; }
|
| 93 |
"""
|
| 94 |
|
|
|
|
| 95 |
print("Loading Model components...")
|
| 96 |
|
| 97 |
processor = AutoProcessor.from_pretrained(model_dir, trust_remote_code=True)
|
|
|
|
| 107 |
print(f"Warning: Could not load GenerationConfig: {e}. Using default.")
|
| 108 |
generation_config = GenerationConfig(max_new_tokens=4096)
|
| 109 |
|
| 110 |
+
print("Model loaded successfully.")
|
| 111 |
|
| 112 |
@spaces.GPU
|
| 113 |
def process_ocr_task(image):
|
|
|
|
| 124 |
if device.type == 'cuda':
|
| 125 |
inputs = {k: v.to(torch.bfloat16) if v.dtype == torch.float32 else v for k, v in inputs.items()}
|
| 126 |
|
| 127 |
+
print("👊 Running inference...")
|
| 128 |
with torch.no_grad():
|
| 129 |
outputs = model.generate(
|
| 130 |
**inputs,
|
|
|
|
| 139 |
print(f"Error extracting boxes: {e}")
|
| 140 |
return generated_text, image
|
| 141 |
|
|
|
|
| 142 |
bboxes = [transform_bbox_to_original(bbox, image.width, image.height) for bbox in bboxes]
|
| 143 |
|
| 144 |
table_format = 'latex'
|
|
|
|
| 191 |
|
| 192 |
return final_output_text, result_image
|
| 193 |
|
|
|
|
| 194 |
with gr.Blocks(css=css, theme=steel_blue_theme) as demo:
|
| 195 |
+
gr.Markdown("# **NVIDIA Nemotron Parse v1.1**", elem_id="main-title")
|
| 196 |
+
gr.Markdown("Upload a document image to extract text, tables, and layout structures using NVIDIA's Nemotron Parse model.")
|
| 197 |
|
| 198 |
with gr.Row():
|
| 199 |
with gr.Column(scale=1):
|
|
|
|
| 201 |
submit_btn = gr.Button("Process Document", variant="primary")
|
| 202 |
|
| 203 |
examples = gr.Examples(
|
| 204 |
+
examples=["examples/1.jpg", "examples/2.jpg", "examples/3.jpg"],
|
| 205 |
inputs=image_input,
|
| 206 |
label="Examples"
|
| 207 |
)
|
| 208 |
|
| 209 |
with gr.Column(scale=2):
|
| 210 |
+
output_text = gr.Textbox(label="Parsed Content (Markdown/LaTeX)", lines=8, show_copy_button=True)
|
| 211 |
output_image = gr.Image(label="Detected Layout & Bounding Boxes", type="pil")
|
| 212 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 213 |
submit_btn.click(
|
| 214 |
fn=process_ocr_task,
|
| 215 |
inputs=[image_input],
|
|
|
|
| 217 |
)
|
| 218 |
|
| 219 |
if __name__ == "__main__":
|
| 220 |
+
demo.queue(max_size=30).launch(share=True, mcp_server=True, ssr_mode=False)
|