Spaces:
Running
on
Zero
Running
on
Zero
File size: 27,864 Bytes
400a879 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 |
# Copyright 2024-2025 The Alibaba Wan Team Authors. All rights reserved.
import argparse
import logging
import os
os.environ["no_proxy"] = "localhost,127.0.0.1,::1"
import sys
import json
import warnings
from datetime import datetime
import gradio as gr
warnings.filterwarnings('ignore')
import random
import torch
import torch.distributed as dist
from PIL import Image
# 导入 AnyTalker 相关的模块
import wan
from wan.configs import SIZE_CONFIGS, SUPPORTED_SIZES, WAN_CONFIGS, MAX_AREA_CONFIGS
from wan.utils.utils import cache_video, str2bool
from wan.utils.infer_utils import calculate_frame_num_from_audio
from utils.get_face_bbox import FaceInference
def str2bool(v):
"""字符串转布尔值工具函数"""
if isinstance(v, bool):
return v
if v.lower() in ('yes', 'true', 't', 'y', '1'):
return True
elif v.lower() in ('no', 'false', 'f', 'n', '0'):
return False
else:
raise argparse.ArgumentTypeError('Boolean value expected.')
def _validate_args(args):
# Basic check
assert args.ckpt_dir is not None, "Please specify the checkpoint directory."
assert args.task in WAN_CONFIGS, f"Unsupport task: {args.task}"
# The default sampling steps are 40 for image-to-video tasks and 50 for text-to-video tasks.
if args.sample_steps is None:
if any(key in args.task for key in ["i2v", "a2v"]):
args.sample_steps = 40
else:
args.sample_steps = 50
if args.sample_shift is None:
args.sample_shift = 5.0
if any(key in args.task for key in ["i2v", "a2v"]) and args.size in ["832*480", "480*832"]:
args.sample_shift = 3.0
# For a2v tasks, frame_num will be determined by audio length if not specified
if args.frame_num is None:
args.frame_num = None
args.base_seed = args.base_seed if args.base_seed >= 0 else random.randint(0, sys.maxsize)
# Size check
assert args.size in SUPPORTED_SIZES[args.task], f"Unsupport size {args.size} for task {args.task}, supported sizes are: {', '.join(SUPPORTED_SIZES[args.task])}"
def _parse_args():
parser = argparse.ArgumentParser(
description="Generate a image or video from a text prompt or image using Wan"
)
parser.add_argument(
"--task",
type=str,
default="a2v-1.3B",
# choices=list(WAN_CONFIGS.keys()),
help="The task to run.")
parser.add_argument(
"--size",
type=str,
default="832*480",
# choices=list(SIZE_CONFIGS.keys()),
help="The area (width*height) of the generated video. For the I2V task, the aspect ratio of the output video will follow that of the input image."
)
parser.add_argument(
"--frame_num",
type=int,
default=None,
help="How many frames to sample from a image or video. The number should be 4n+1. For a2v tasks, if not specified, frame number will be automatically determined based on audio length."
)
parser.add_argument(
"--ckpt_dir",
type=str,
default="./checkpoints/Wan2.1-Fun-1.3B-Inp",
help="The path to the checkpoint directory.")
parser.add_argument(
"--post_trained_checkpoint_path",
type=str,
default="./checkpoints/AnyTalker/1_3B-single-v1.pth",
help="The path to the posted-trained checkpoint file.")
parser.add_argument(
"--offload_model",
type=str2bool,
default=True,
help="Whether to offload the model to CPU after each model forward, reducing GPU memory usage."
)
parser.add_argument(
"--use_half",
type=str2bool,
default=True,
help="Whether to use half precision for model inference, reducing GPU memory usage."
)
parser.add_argument(
"--ulysses_size",
type=int,
default=1,
help="The size of the ulysses parallelism in DiT.")
parser.add_argument(
"--ring_size",
type=int,
default=1,
help="The size of the ring attention parallelism in DiT.")
parser.add_argument(
"--t5_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for T5.")
parser.add_argument(
"--t5_cpu",
action="store_true",
default=False,
help="Whether to place T5 model on CPU.")
parser.add_argument(
"--dit_fsdp",
action="store_true",
default=False,
help="Whether to use FSDP for DiT.")
parser.add_argument(
"--save_file",
type=str,
default=None,
help="The file to save the generated image or video to.")
parser.add_argument(
"--save_dir",
type=str,
default=None,
help="The directory to save the generated image or video to.")
parser.add_argument(
"--prompt",
type=str,
default=None,
help="The prompt to generate the image or video from.")
parser.add_argument(
"--use_prompt_extend",
action="store_true",
default=False,
help="Whether to use prompt extend.")
parser.add_argument(
"--prompt_extend_method",
type=str,
default="local_qwen",
choices=["dashscope", "local_qwen"],
help="The prompt extend method to use.")
parser.add_argument(
"--prompt_extend_model",
type=str,
default=None,
help="The prompt extend model to use.")
parser.add_argument(
"--prompt_extend_target_lang",
type=str,
default="zh",
choices=["zh", "en"],
help="The target language of prompt extend.")
parser.add_argument(
"--base_seed",
type=int,
default=44,
help="The seed to use for generating the image or video.")
parser.add_argument(
"--image",
type=str,
default=None,
help="The image to generate the video from.")
parser.add_argument(
"--audio",
type=str,
default=None,
help="The audio to generate the video from.")
parser.add_argument(
"--sample_solver",
type=str,
default='unipc',
choices=['unipc', 'dpm++'],
help="The solver used to sample.")
parser.add_argument(
"--sample_steps", type=int, default=None, help="The sampling steps.")
parser.add_argument(
"--sample_shift",
type=float,
default=None,
help="Sampling shift factor for flow matching schedulers.")
parser.add_argument(
"--sample_guide_scale",
type=float,
default=4.5,
help="Classifier free guidance scale.")
parser.add_argument(
"--cfg_zero",
action="store_true",
default=False,
help="Whether to use adaptive CFG-Zero guidance instead of fixed guidance scale.")
parser.add_argument(
"--zero_init_steps",
type=int,
default=0,
help="Number of initial steps to use zero guidance when using cfg_zero.")
parser.add_argument(
"--sample_fps",
type=int,
default=24,
help="The frames per second (FPS) of the generated video. Overrides the default value from the config.")
parser.add_argument(
"--batch_gen_json",
type=str,
default=None,
help="Path to prompts.json file for batch processing. Images and outputs are in the same directory.")
parser.add_argument(
"--batch_output",
type=str,
default=None,
help="Directory to save generated videos when using batch processing. If not specified, defaults to the json filename (without extension) in the same directory.")
parser.add_argument(
"--dit_config",
type=str,
default="./checkpoints/AnyTalker/config_af2v_1_3B.json",
help="The path to the dit config file.")
parser.add_argument(
"--det_thresh",
type=float,
default=0.15,
help="Threshold for InsightFace face detection.")
parser.add_argument(
"--mode",
type=str,
default="pad",
choices=["pad", "concat"],
help="The mode to use for audio processing.")
parser.add_argument(
"--audio_save_dir",
type=str,
default='save_audio/gradio',
help="The path to save the audio embedding.")
args = parser.parse_args()
_validate_args(args)
return args
def _init_logging(rank):
# logging
if rank == 0:
# set format
logging.basicConfig(
level=logging.INFO,
format="[%(asctime)s] %(levelname)s: %(message)s",
handlers=[logging.StreamHandler(stream=sys.stdout)])
else:
logging.basicConfig(level=logging.ERROR)
def run_graio_demo(args):
# 设置 Gradio 临时文件目录
gradio_temp_dir = os.path.join(os.path.dirname(os.path.abspath(__file__)), 'gradio_temp')
os.makedirs(gradio_temp_dir, exist_ok=True)
os.environ['GRADIO_TEMP_DIR'] = gradio_temp_dir
rank = int(os.getenv("RANK", 0))
world_size = int(os.getenv("WORLD_SIZE", 1))
local_rank = int(os.getenv("LOCAL_RANK", 0))
device = local_rank
_init_logging(rank)
if args.offload_model is None:
args.offload_model = False if world_size > 1 else True
logging.info(
f"offload_model is not specified, set to {args.offload_model}.")
if world_size > 1:
torch.cuda.set_device(local_rank)
dist.init_process_group(
backend="nccl",
init_method="env://",
rank=rank,
world_size=world_size)
else:
assert not (
args.t5_fsdp or args.dit_fsdp
), f"t5_fsdp and dit_fsdp are not supported in non-distributed environments."
assert not (
args.ulysses_size > 1 or args.ring_size > 1
), f"context parallel are not supported in non-distributed environments."
if args.ulysses_size > 1 or args.ring_size > 1:
assert args.ulysses_size * args.ring_size == world_size, f"The number of ulysses_size and ring_size should be equal to the world size."
from xfuser.core.distributed import (
init_distributed_environment,
initialize_model_parallel,
)
init_distributed_environment(
rank=dist.get_rank(), world_size=dist.get_world_size())
initialize_model_parallel(
sequence_parallel_degree=dist.get_world_size(),
ring_degree=args.ring_size,
ulysses_degree=args.ulysses_size,
)
# 加载配置
cfg = WAN_CONFIGS[args.task]
if args.ulysses_size > 1:
assert cfg.num_heads % args.ulysses_size == 0, f"`{cfg.num_heads=}` cannot be divided evenly by `{args.ulysses_size=}`."
# 设置 fps
cfg.fps = args.sample_fps if args.sample_fps is not None else cfg.fps
logging.info(f"Generation job args: {args}")
logging.info(f"Generation model config: {cfg}")
if dist.is_initialized():
base_seed = [args.base_seed] if rank == 0 else [None]
dist.broadcast_object_list(base_seed, src=0)
args.base_seed = base_seed[0]
os.makedirs(args.audio_save_dir, exist_ok=True)
logging.info("Creating AnyTalker pipeline.")
# 加载模型
wan_a2v = wan.WanAF2V(
config=cfg,
checkpoint_dir=args.ckpt_dir,
device_id=device,
rank=rank,
use_half=args.use_half,
t5_fsdp=args.t5_fsdp,
dit_fsdp=args.dit_fsdp,
t5_cpu=args.t5_cpu,
post_trained_checkpoint_path=args.post_trained_checkpoint_path,
dit_config=args.dit_config,
)
# 创建 InsightFace 人脸检测器
face_processor = FaceInference(det_thresh=args.det_thresh, ctx_id=local_rank)
logging.info("Model and face processor loaded successfully.")
def generate_video(img2vid_image, img2vid_prompt, n_prompt, img2vid_audio_1, img2vid_audio_2, img2vid_audio_3,
sd_steps, seed, guide_scale, person_num_selector, audio_mode_selector):
input_data = {}
input_data["prompt"] = img2vid_prompt
input_data["cond_image"] = img2vid_image
input_data["audio_mode"] = audio_mode_selector # "pad" or "concat"
# 根据人数收集音频路径
audio_paths = []
if person_num_selector == "1 Person":
if img2vid_audio_1:
audio_paths.append(img2vid_audio_1)
elif person_num_selector == "2 Persons":
if img2vid_audio_1:
audio_paths.append(img2vid_audio_1)
if img2vid_audio_2:
audio_paths.append(img2vid_audio_2)
elif person_num_selector == "3 Persons":
if img2vid_audio_1:
audio_paths.append(img2vid_audio_1)
if img2vid_audio_2:
audio_paths.append(img2vid_audio_2)
if img2vid_audio_3:
audio_paths.append(img2vid_audio_3)
input_data["audio_paths"] = audio_paths
logging.info(f"Generating video with {len(audio_paths)} audio(s), mode: {audio_mode_selector}")
# 根据音频长度计算帧数
current_frame_num = args.frame_num
if current_frame_num is None:
if audio_paths and len(audio_paths) > 0:
# 使用 cfg 中的 fps,如果不可用则使用默认值 24
fps = getattr(cfg, 'fps', 24)
current_frame_num = calculate_frame_num_from_audio(audio_paths, fps, mode=audio_mode_selector)
logging.info(f"Dynamically determined frame number: {current_frame_num} (mode: {audio_mode_selector})")
else:
# 没有音频时使用默认帧数
current_frame_num = 81 # 默认帧数
logging.info(f"No audio provided, using default frame number: {current_frame_num}")
else:
logging.info(f"Using specified frame number: {current_frame_num}")
# 读取图片
img = Image.open(input_data["cond_image"]).convert("RGB")
# 生成视频
video = wan_a2v.generate(
input_data["prompt"],
img,
audio=audio_paths[0] if audio_paths and len(audio_paths) > 0 else None,
max_area=MAX_AREA_CONFIGS[args.size],
frame_num=current_frame_num,
shift=args.sample_shift,
sample_solver=args.sample_solver,
sampling_steps=sd_steps,
guide_scale=guide_scale,
seed=seed if seed >= 0 else args.base_seed,
offload_model=args.offload_model,
cfg_zero=args.cfg_zero,
zero_init_steps=args.zero_init_steps,
face_processor=face_processor,
img_path=input_data["cond_image"],
audio_paths=audio_paths,
task_key="gradio_output",
mode=audio_mode_selector,
)
if isinstance(video, dict):
video = video['original']
# 生成输出文件名(替换特殊字符避免 shell 解析问题)
formatted_time = datetime.now().strftime("%Y%m%d_%H%M%S")
formatted_prompt = input_data['prompt'].replace(" ", "_").replace("/", "_").replace(",", "").replace("*", "x")[:50]
formatted_size = args.size.replace('*', 'x')
save_file = f"outputs/{args.task}_{formatted_size}_{formatted_prompt}_{formatted_time}"
# 确保输出目录存在
os.makedirs("outputs", exist_ok=True)
# 注意:cache_video 不会自动添加后缀,需要传入完整文件名
output_file = save_file + '.mp4'
logging.info(f"Saving generated video to {output_file}")
cache_video(
tensor=video[None],
save_file=output_file,
fps=args.sample_fps if args.sample_fps is not None else cfg.sample_fps,
nrow=1,
normalize=True,
value_range=(-1, 1))
# 如果有音频文件,进行音频合成
if audio_paths:
existing_audio_paths = [path for path in audio_paths if path and os.path.exists(path)]
if existing_audio_paths:
# 构建输出文件名
audio_names = [os.path.basename(path).split('.')[0] for path in existing_audio_paths]
audio_suffix = "_".join([f"audio{i}_{name}" for i, name in enumerate(audio_names)])
audio_video_path = save_file + f'_{audio_suffix}_cfg_{guide_scale}.mp4'
# 构建 ffmpeg 命令
if len(existing_audio_paths) == 1:
# 只有一个音频
ffmpeg_command = f'ffmpeg -i "{output_file}" -i "{existing_audio_paths[0]}" -vcodec libx264 -acodec aac -crf 18 -shortest -y "{audio_video_path}"'
else:
input_args = f'-i "{output_file}"'
if audio_mode_selector == "concat":
# concat 模式:串联音频
for audio_path in existing_audio_paths:
input_args += f' -i "{audio_path}"'
num_audios = len(existing_audio_paths)
concat_inputs = ''.join([f'[{i+1}:a]' for i in range(num_audios)])
filter_complex = f'"{concat_inputs}concat=n={num_audios}:v=0:a=1[aout]"'
ffmpeg_command = (
f'ffmpeg {input_args} -filter_complex {filter_complex} '
f'-map 0:v -map "[aout]" -vcodec libx264 -acodec aac -crf 18 -y "{audio_video_path}"'
)
else:
# pad 模式:混合所有音频
filter_inputs = []
for i, audio_path in enumerate(existing_audio_paths):
input_args += f' -i "{audio_path}"'
filter_inputs.append(f'[{i+1}:a]')
filter_complex = f'{"".join(filter_inputs)}amix=inputs={len(existing_audio_paths)}:duration=shortest[aout]'
ffmpeg_command = f'ffmpeg {input_args} -filter_complex "{filter_complex}" -map 0:v -map "[aout]" -vcodec libx264 -acodec aac -crf 18 -y "{audio_video_path}"'
logging.info(f"Adding audio: {ffmpeg_command}")
os.system(ffmpeg_command)
# 删除没有音频的原始视频文件
if os.path.exists(audio_video_path):
os.remove(output_file)
output_file = audio_video_path
logging.info(f"Final video saved to: {output_file}")
else:
logging.warning(f"Audio synthesis failed, keeping original video: {output_file}")
else:
logging.info(f"No valid audio files found, video saved to: {output_file}")
else:
logging.info(f"No audio files provided, video saved to: {output_file}")
logging.info("Finished.")
return output_file
def toggle_audio_inputs(person_num):
"""根据选择的人数显示对应数量的音频输入框"""
if person_num == "1 Person":
return [
gr.Audio(visible=True, interactive=True),
gr.Audio(visible=False, interactive=False),
gr.Audio(visible=False, interactive=False)
]
elif person_num == "2 Persons":
return [
gr.Audio(visible=True, interactive=True),
gr.Audio(visible=True, interactive=True),
gr.Audio(visible=False, interactive=False)
]
else: # 3 Persons
return [
gr.Audio(visible=True, interactive=True),
gr.Audio(visible=True, interactive=True),
gr.Audio(visible=True, interactive=True)
]
with gr.Blocks() as demo:
gr.Markdown("""
<div style="text-align: center; font-size: 32px; font-weight: bold; margin-bottom: 20px;">
AnyTalker
</div>
<div style="text-align: center; font-size: 16px; font-weight: normal; margin-bottom: 20px;">
Let your characters interact naturally.
</div>
<div style="display: flex; justify-content: center; gap: 10px; flex-wrap: wrap;">
<a href='https://hkust-c4g.github.io/AnyTalker-homepage/'><img src='https://img.shields.io/badge/Project-Page-blue'></a>
<a href='https://huggingface.co/zzz66/AnyTalker-1.3B'><img src='https://img.shields.io/badge/%F0%9F%A4%97%20HuggingFace-Model-yellow'></a>
<a href='https://arxiv.org/abs/2511.23475/'><img src='https://img.shields.io/badge/Paper-Arxiv-red'></a>
</div>
""")
with gr.Row():
with gr.Column(scale=1):
img2vid_image = gr.Image(
type="filepath",
label="Upload Input Image",
elem_id="image_upload",
)
img2vid_prompt = gr.Textbox(
label="Prompt",
placeholder="Describe the video you want to generate",
)
with gr.Accordion("Audio Options", open=True):
person_num_selector = gr.Radio(
choices=["1 Person", "2 Persons", "3 Persons"],
label="Number of Persons (determined by audio inputs)",
value="1 Person"
)
audio_mode_selector = gr.Radio(
choices=["pad", "concat"],
label="Audio Processing Mode",
value="pad"
)
gr.Markdown("""
**Audio Mode Description:**
- **pad**: Select this if every audio input track has already been zero-padded to a common length.
- **concat**: Select this if you want the script to chain each speaker's clips together and then zero-pad the non-speaker segments to reach a uniform length.
""")
img2vid_audio_1 = gr.Audio(label="Audio for Person 1", type="filepath", visible=True)
img2vid_audio_2 = gr.Audio(label="Audio for Person 2", type="filepath", visible=False)
img2vid_audio_3 = gr.Audio(label="Audio for Person 3", type="filepath", visible=False)
person_num_selector.change(
fn=toggle_audio_inputs,
inputs=person_num_selector,
outputs=[img2vid_audio_1, img2vid_audio_2, img2vid_audio_3]
)
with gr.Accordion("Advanced Options", open=False):
with gr.Row():
sd_steps = gr.Slider(
label="Diffusion steps",
minimum=1,
maximum=1000,
value=40,
step=1)
seed = gr.Slider(
label="Seed",
minimum=-1,
maximum=2147483647,
step=1,
value=41)
with gr.Row():
guide_scale = gr.Slider(
label="Guide Scale",
minimum=0,
maximum=20,
value=4.5,
step=0.1)
# with gr.Row():
n_prompt = gr.Textbox(
label="Negative Prompt",
placeholder="Describe the negative prompt you want to add",
value="bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
)
run_i2v_button = gr.Button("Generate Video")
with gr.Column(scale=2):
result_gallery = gr.Video(
label='Generated Video', interactive=False, height=600, )
gr.Examples(
examples = [
["./input_example/images/1p-0.png", "The man stands in the dusty western street, backlit by the setting sun, and his determined gaze speaks of a rugged spirit.", "1 Person", "pad", "./input_example/audios/1p-0.wav", None, None],
["./input_example/images/2p-0.png", "The two people are talking to each other.", "2 Persons", "pad", "./input_example/audios/2p-0-left.wav", "./input_example/audios/2p-0-right.wav", None],
["./input_example/images/2p-1.png", "In a casual, intimate setting, a man and a woman are engaged in a heartfelt conversation inside a car. The man, sporting a denim jacket over a blue shirt, sits attentively with a seatbelt fastened, his gaze fixed on the woman beside him. The woman, wearing a black tank top and a denim jacket draped over her shoulders, smiles warmly, her eyes reflecting genuine interest and connection. The car's interior, with its beige seats and simple design, provides a backdrop that emphasizes their interaction. The scene captures a moment of shared understanding and connection, set against the soft, diffused light of an overcast day. A medium shot from a slightly angled perspective, focusing on their expressions and body language.", "2 Persons", "pad", "./input_example/audios/2p-1-left.wav", "./input_example/audios/2p-1-right.wav", None],
["./input_example/images/2p-2.png", "In a cozy recording studio, a man and a woman are singing together. The man, with tousled brown hair, stands to the left, wearing a light green button-down shirt. His gaze is directed towards the woman, who is smiling warmly. She, with wavy dark hair, is dressed in a black floral dress and stands to the right, her eyes closed in enjoyment. Between them is a professional microphone, capturing their harmonious voices. The background features wooden panels and various audio equipment, creating an intimate and focused atmosphere. The lighting is soft and warm, highlighting their expressions and the intimate setting. A medium shot captures their interaction closely.", "2 Persons", "pad", "./input_example/audios/2p-2-left.wav", "./input_example/audios/2p-2-right.wav", None],
],
inputs = [img2vid_image, img2vid_prompt, person_num_selector, audio_mode_selector, img2vid_audio_1, img2vid_audio_2, img2vid_audio_3],
)
run_i2v_button.click(
fn=generate_video,
inputs=[img2vid_image, img2vid_prompt, n_prompt, img2vid_audio_1, img2vid_audio_2, img2vid_audio_3, sd_steps, seed, guide_scale, person_num_selector, audio_mode_selector],
outputs=[result_gallery],
)
demo.launch(server_name="0.0.0.0", debug=True, server_port=8418)
if __name__ == "__main__":
args = _parse_args()
run_graio_demo(args)
|