Spaces:
Running
on
Zero
Running
on
Zero
Update app.py
#10
by
reach-vb
HF Staff
- opened
- README.md +1 -1
- app.py +68 -253
- requirements.txt +1 -3
README.md
CHANGED
|
@@ -1,5 +1,5 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
emoji: 🔥
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: purple
|
|
|
|
| 1 |
---
|
| 2 |
+
title: Test
|
| 3 |
emoji: 🔥
|
| 4 |
colorFrom: green
|
| 5 |
colorTo: purple
|
app.py
CHANGED
|
@@ -1,304 +1,119 @@
|
|
| 1 |
-
import spaces
|
| 2 |
-
|
| 3 |
import os
|
| 4 |
-
import re
|
| 5 |
import time
|
| 6 |
from typing import List, Dict, Tuple
|
| 7 |
-
import threading
|
| 8 |
|
| 9 |
-
import torch
|
| 10 |
import gradio as gr
|
| 11 |
-
from transformers import
|
| 12 |
-
|
| 13 |
|
| 14 |
# === Config (override via Space secrets/env vars) ===
|
| 15 |
-
MODEL_ID = os.environ.get("MODEL_ID", "openai/gpt-oss-
|
|
|
|
| 16 |
DEFAULT_MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", 512))
|
| 17 |
-
DEFAULT_TEMPERATURE = float(os.environ.get("TEMPERATURE",
|
| 18 |
-
DEFAULT_TOP_P = float(os.environ.get("TOP_P",
|
| 19 |
DEFAULT_REPETITION_PENALTY = float(os.environ.get("REPETITION_PENALTY", 1.0))
|
| 20 |
ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120)) # seconds
|
| 21 |
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
SAMPLE_POLICY = """
|
| 25 |
-
Spam Policy (#SP)
|
| 26 |
-
GOAL: Identify spam. Classify each EXAMPLE as VALID (no spam) or INVALID (spam) using this policy.
|
| 27 |
-
|
| 28 |
-
DEFINITIONS
|
| 29 |
-
Spam: unsolicited, repetitive, deceptive, or low-value promotional content.
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
Bulk Messaging: Same or similar messages sent repeatedly.
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
Unsolicited Promotion: Promotion without user request or relationship.
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
Deceptive Spam: Hidden or fraudulent intent (fake identity, fake offer).
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
Link Farming: Multiple irrelevant or commercial links to drive clicks.
|
| 42 |
-
|
| 43 |
-
✅ Allowed Content (SP0 – Non-Spam or very low confidence signals of spam)
|
| 44 |
-
Content that is useful, contextual, or non-promotional. May look spammy but could be legitimate.
|
| 45 |
-
SP0.a Useful/info request – “How do I upload a product photo?”
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
SP0.b Personalized communication – “Hi Sam, here is the report.”
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
SP0.c Business support – “Can you fix my order?”
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
SP0.d Single contextual promo – “Thanks for subscribing—here’s your welcome guide.”
|
| 55 |
-
|
| 56 |
-
SP0.e Generic request – “Please respond ASAP.”
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
SP0.f Low-quality formatting – “HeLLo CLICK here FAST.”
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
SP0.g Vague benefit statement – “This tool changes lives.”
|
| 63 |
-
|
| 64 |
-
✅ Output: VALID either clearly non-spam or very low confidence signals content could be spam.
|
| 65 |
-
|
| 66 |
-
|
| 67 |
-
🚫 Likely Spam (SP2 – Medium Confidence)
|
| 68 |
-
Unsolicited promotion without deception.
|
| 69 |
-
SP2.a Cold promotion – “Check out my Shopify course: shopcoach.biz”
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
SP2.b Irrelevant ads – “Buy gold rings here!”
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
SP2.c Excessive linking – “http://x.com http://y.com http://z.com”
|
| 76 |
-
❌ Output: INVALID
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
❗ High-Risk Spam (SP3 – Strong Confidence)
|
| 80 |
-
Spam showing scaling, automation, or aggressive tactics.
|
| 81 |
-
SP3.a Repetitive posting – “JOIN NOW JOIN NOW JOIN NOW”
|
| 82 |
-
|
| 83 |
-
|
| 84 |
-
SP3.b Pyramid/affiliate bait – “Earn $$$ by recruiting members”
|
| 85 |
-
|
| 86 |
-
|
| 87 |
-
SP3.c Fake engagement – “Comment ‘YES’ to win $500 gift card”
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
SP3.d Misleading claims – “Guaranteed 10,000 new followers overnight!”
|
| 91 |
-
❌ Output: INVALID
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
🚨 Malicious Spam (SP4 – Maximum Severity)
|
| 95 |
-
Spam with fraud, deception, or harmful intent.
|
| 96 |
-
SP4.a Phishing – “Your account is locked. Enter your password here.”
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
SP4.b Malware/scam – “Download invoice.exe to claim payment.”
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
SP4.c Account takeover attempts – “Send crypto to 0xABC123 to double your money.”
|
| 103 |
-
❌ Output: INVALID + ESCALATE
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
LABEL FORMAT
|
| 107 |
-
Each item gets two labels:
|
| 108 |
-
Depiction (D-SP#): Presence of spam in content.
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
Request (R-SP#): User asking to generate spam.
|
| 112 |
-
| Example | Classification |
|
| 113 |
-
|----------|---------------|
|
| 114 |
-
| “Shop this site: dealplanet.io” | D-S2, R-S0 |
|
| 115 |
-
| “Write a sales blast message with 10 links” | D-S0, R-S2 |
|
| 116 |
-
| “How can I make this link look legitimate so viewers put in their private credentials” | D-S4, R-S4 |
|
| 117 |
-
| “Promote crypto fast to random people” | D-S0, R-S3 |
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
AMBIGUITY & ESCALATION
|
| 121 |
-
If unclear → downgrade severity by 1 and seek clarification.
|
| 122 |
-
|
| 123 |
-
|
| 124 |
-
If automation suspected → SP2 or higher.
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
If financial harm or fraud → classify SP4.
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
If combined with other indicators of abuse, violence, or illicit behavior, apply highest severity policy.
|
| 131 |
-
"""
|
| 132 |
-
|
| 133 |
-
_tokenizer = None
|
| 134 |
-
_model = None
|
| 135 |
-
_device = None
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
def _ensure_loaded():
|
| 139 |
-
print("Loading model and tokenizer")
|
| 140 |
-
global _tokenizer, _model, _device
|
| 141 |
-
if _tokenizer is not None and _model is not None:
|
| 142 |
-
return
|
| 143 |
-
_tokenizer = AutoTokenizer.from_pretrained(
|
| 144 |
-
MODEL_ID, trust_remote_code=True
|
| 145 |
-
)
|
| 146 |
-
_model = AutoModelForCausalLM.from_pretrained(
|
| 147 |
-
MODEL_ID,
|
| 148 |
-
trust_remote_code=True,
|
| 149 |
-
# torch_dtype=torch.float16 if torch.cuda.is_available() else torch.float32,
|
| 150 |
-
low_cpu_mem_usage=True,
|
| 151 |
-
device_map="auto" if torch.cuda.is_available() else None,
|
| 152 |
-
)
|
| 153 |
-
if _tokenizer.pad_token_id is None and _tokenizer.eos_token_id is not None:
|
| 154 |
-
_tokenizer.pad_token = _tokenizer.eos_token
|
| 155 |
-
_model.eval()
|
| 156 |
-
_device = next(_model.parameters()).device
|
| 157 |
-
|
| 158 |
-
_ensure_loaded()
|
| 159 |
-
|
| 160 |
-
# ----------------------------
|
| 161 |
-
# Helpers (simple & explicit)
|
| 162 |
-
# ----------------------------
|
| 163 |
|
| 164 |
|
| 165 |
def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
|
| 166 |
-
|
| 167 |
if policy.strip():
|
| 168 |
-
|
| 169 |
-
|
| 170 |
-
|
|
|
|
|
|
|
|
|
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
|
| 173 |
-
# ----------------------------
|
| 174 |
-
# Inference
|
| 175 |
-
# ----------------------------
|
| 176 |
|
| 177 |
@spaces.GPU(duration=ZGPU_DURATION)
|
| 178 |
-
def
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
) -> Tuple[str, str, str]:
|
| 186 |
-
|
| 187 |
start = time.time()
|
| 188 |
|
| 189 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 190 |
|
| 191 |
-
|
| 192 |
-
_tokenizer,
|
| 193 |
-
skip_special_tokens=True,
|
| 194 |
-
skip_prompt=True, # <-- key fix
|
| 195 |
-
)
|
| 196 |
|
| 197 |
-
|
| 198 |
messages,
|
| 199 |
-
return_tensors="pt",
|
| 200 |
-
add_generation_prompt=True,
|
| 201 |
-
)
|
| 202 |
-
input_ids = inputs["input_ids"] if isinstance(inputs, dict) else inputs
|
| 203 |
-
input_ids = input_ids.to(_device)
|
| 204 |
-
|
| 205 |
-
gen_kwargs = dict(
|
| 206 |
-
input_ids=input_ids,
|
| 207 |
max_new_tokens=max_new_tokens,
|
| 208 |
-
do_sample=
|
| 209 |
-
temperature=
|
| 210 |
top_p=top_p,
|
| 211 |
-
|
| 212 |
-
eos_token_id=_tokenizer.eos_token_id,
|
| 213 |
-
streamer=streamer,
|
| 214 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
|
| 216 |
-
|
| 217 |
-
thread.start()
|
| 218 |
-
|
| 219 |
-
analysis = ""
|
| 220 |
-
output = ""
|
| 221 |
-
for new_text in streamer:
|
| 222 |
-
output += new_text
|
| 223 |
-
if not analysis:
|
| 224 |
-
m = ANALYSIS_PATTERN.match(output)
|
| 225 |
-
if m:
|
| 226 |
-
analysis = re.sub(r'^analysis\s*', '', m.group(1))
|
| 227 |
-
output = ""
|
| 228 |
-
|
| 229 |
-
if not analysis:
|
| 230 |
-
analysis_text = re.sub(r'^analysis\s*', '', output)
|
| 231 |
-
final_text = None
|
| 232 |
-
else:
|
| 233 |
-
analysis_text = analysis
|
| 234 |
-
final_text = output
|
| 235 |
-
elapsed = time.time() - start
|
| 236 |
-
meta = f"Model: {MODEL_ID} | Time: {elapsed:.1f}s | max_new_tokens={max_new_tokens}"
|
| 237 |
-
yield analysis_text or "(No analysis)", final_text or "(No answer)", meta
|
| 238 |
|
|
|
|
|
|
|
|
|
|
| 239 |
|
| 240 |
-
# ----------------------------
|
| 241 |
-
# UI
|
| 242 |
-
# ----------------------------
|
| 243 |
|
| 244 |
-
CUSTOM_CSS = "/**
|
| 245 |
|
| 246 |
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
|
| 247 |
-
|
| 248 |
-
gr.Markdown("""
|
| 249 |
-
# OpenAI gpt-oss-safeguard 20B
|
| 250 |
-
Download [gpt-oss-safeguard-120b](https://huggingface.co/openai/gpt-oss-safeguard-120b) and [gpt-oss-safeguard-20b]( https://huggingface.co/openai/gpt-oss-safeguard-20b) on Hugging Face, [Prompt Guide](https://cookbook.openai.com/articles/gpt-oss-safeguard-guide), and [OpenAI Blog](https://openai.com/index/introducing-gpt-oss-safeguard/).
|
| 251 |
-
|
| 252 |
-
Provide a **Policy** and a **Prompt**.
|
| 253 |
-
""")
|
| 254 |
|
| 255 |
with gr.Row():
|
| 256 |
-
with gr.Column(scale=1
|
| 257 |
-
policy = gr.Textbox(
|
| 258 |
-
|
| 259 |
-
lines=20, # bigger than prompt
|
| 260 |
-
placeholder="Rules, tone, and constraints…",
|
| 261 |
-
)
|
| 262 |
-
prompt = gr.Textbox(
|
| 263 |
-
label="Prompt",
|
| 264 |
-
lines=5,
|
| 265 |
-
placeholder="Your request…",
|
| 266 |
-
)
|
| 267 |
with gr.Accordion("Advanced settings", open=False):
|
| 268 |
max_new_tokens = gr.Slider(16, 4096, value=DEFAULT_MAX_NEW_TOKENS, step=8, label="max_new_tokens")
|
| 269 |
temperature = gr.Slider(0.0, 1.5, value=DEFAULT_TEMPERATURE, step=0.05, label="temperature")
|
| 270 |
top_p = gr.Slider(0.0, 1.0, value=DEFAULT_TOP_P, step=0.01, label="top_p")
|
| 271 |
repetition_penalty = gr.Slider(0.8, 2.0, value=DEFAULT_REPETITION_PENALTY, step=0.05, label="repetition_penalty")
|
| 272 |
-
|
| 273 |
-
|
| 274 |
-
|
| 275 |
-
|
| 276 |
-
analysis = gr.Textbox(label="Analysis", lines=12)
|
| 277 |
-
answer = gr.Textbox(label="Answer", lines=12)
|
| 278 |
meta = gr.Markdown()
|
| 279 |
|
| 280 |
-
|
| 281 |
-
fn=
|
| 282 |
inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty],
|
| 283 |
outputs=[analysis, answer, meta],
|
| 284 |
concurrency_limit=1,
|
| 285 |
api_name="generate",
|
| 286 |
)
|
| 287 |
|
| 288 |
-
def _clear():
|
| 289 |
-
return "", "", "", ""
|
| 290 |
-
|
| 291 |
-
clr.click(_clear, outputs=[policy, prompt, analysis, answer])
|
| 292 |
-
|
| 293 |
-
gr.Examples(
|
| 294 |
-
examples=[
|
| 295 |
-
[SAMPLE_POLICY, "Your bank details are needed to complete this transaction."],
|
| 296 |
-
[SAMPLE_POLICY, "NOW IS THE TIME TO CUT THE CORD AND JOIN. Where else will you get THE BEST that TV can offer for HALF the price?"],
|
| 297 |
-
[SAMPLE_POLICY, "I am SO tired of weight loss regiments not working --- it's been a lifetimes stuggle."],
|
| 298 |
-
[SAMPLE_POLICY, "The value of gold has skyrocketed --- maybe it's time for you to get some? "],
|
| 299 |
-
],
|
| 300 |
-
inputs=[policy, prompt],
|
| 301 |
-
)
|
| 302 |
-
|
| 303 |
if __name__ == "__main__":
|
| 304 |
demo.queue(max_size=32).launch()
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
|
|
|
| 2 |
import time
|
| 3 |
from typing import List, Dict, Tuple
|
|
|
|
| 4 |
|
|
|
|
| 5 |
import gradio as gr
|
| 6 |
+
from transformers import pipeline
|
| 7 |
+
import spaces
|
| 8 |
|
| 9 |
# === Config (override via Space secrets/env vars) ===
|
| 10 |
+
MODEL_ID = os.environ.get("MODEL_ID", "openai/gpt-oss-20b")
|
| 11 |
+
STATIC_PROMPT = """"""
|
| 12 |
DEFAULT_MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", 512))
|
| 13 |
+
DEFAULT_TEMPERATURE = float(os.environ.get("TEMPERATURE", 0.7))
|
| 14 |
+
DEFAULT_TOP_P = float(os.environ.get("TOP_P", 0.95))
|
| 15 |
DEFAULT_REPETITION_PENALTY = float(os.environ.get("REPETITION_PENALTY", 1.0))
|
| 16 |
ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120)) # seconds
|
| 17 |
|
| 18 |
+
_pipe = None # cached pipeline
|
| 19 |
+
_tok = None # tokenizer for parsing Harmony format
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 20 |
|
| 21 |
|
| 22 |
def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
|
| 23 |
+
messages = []
|
| 24 |
if policy.strip():
|
| 25 |
+
messages.append({"role": "system", "content": policy.strip()})
|
| 26 |
+
# if STATIC_PROMPT:
|
| 27 |
+
# messages.append({"role": "system", "content": STATIC_PROMPT})
|
| 28 |
+
messages.append({"role": "user", "content": user_prompt})
|
| 29 |
+
return messages
|
| 30 |
+
|
| 31 |
|
| 32 |
+
def _parse_harmony_output(last, tokenizer):
|
| 33 |
+
analysis, content = None, None
|
| 34 |
+
if isinstance(last, dict) and ("content" in last or "thinking" in last):
|
| 35 |
+
analysis = last.get("thinking")
|
| 36 |
+
content = last.get("content")
|
| 37 |
+
else:
|
| 38 |
+
parsed = tokenizer.parse_response(last)
|
| 39 |
+
analysis = parsed.get("thinking")
|
| 40 |
+
content = parsed.get("content")
|
| 41 |
+
return analysis, content
|
| 42 |
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
@spaces.GPU(duration=ZGPU_DURATION)
|
| 45 |
+
def generate_long_prompt(
|
| 46 |
+
policy: str,
|
| 47 |
+
prompt: str,
|
| 48 |
+
max_new_tokens: int,
|
| 49 |
+
temperature: float,
|
| 50 |
+
top_p: float,
|
| 51 |
+
repetition_penalty: float,
|
| 52 |
) -> Tuple[str, str, str]:
|
| 53 |
+
global _pipe, _tok
|
| 54 |
start = time.time()
|
| 55 |
|
| 56 |
+
if _pipe is None:
|
| 57 |
+
_pipe = pipeline(
|
| 58 |
+
task="text-generation",
|
| 59 |
+
model=MODEL_ID,
|
| 60 |
+
torch_dtype="auto",
|
| 61 |
+
device_map="auto",
|
| 62 |
+
)
|
| 63 |
+
_tok = _pipe.tokenizer
|
| 64 |
|
| 65 |
+
messages = _to_messages(policy, prompt)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
+
outputs = _pipe(
|
| 68 |
messages,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 69 |
max_new_tokens=max_new_tokens,
|
| 70 |
+
do_sample=True,
|
| 71 |
+
temperature=temperature,
|
| 72 |
top_p=top_p,
|
| 73 |
+
repetition_penalty=repetition_penalty,
|
|
|
|
|
|
|
| 74 |
)
|
| 75 |
+
print(outputs)
|
| 76 |
+
res = outputs[0]
|
| 77 |
+
print(res)
|
| 78 |
+
last = res.get("generated_text", [])
|
| 79 |
+
print(last)
|
| 80 |
+
if isinstance(last, list) and last:
|
| 81 |
+
last = last[-1]
|
| 82 |
|
| 83 |
+
analysis, content = _parse_harmony_output(last, _tok)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
|
| 85 |
+
elapsed = time.time() - start
|
| 86 |
+
meta = f"Model: {MODEL_ID} | Time: {elapsed:.1f}s | max_new_tokens={max_new_tokens}"
|
| 87 |
+
return analysis or "(No analysis)", content or "(No answer)", meta
|
| 88 |
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
+
CUSTOM_CSS = "/** Simple styling **/\n.gradio-container {font-family: ui-sans-serif, system-ui, Inter, Roboto;}\ntextarea {font-family: ui-monospace, monospace;}\nfooter {display:none;}"
|
| 91 |
|
| 92 |
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
|
| 93 |
+
gr.Markdown("""# GPT‑OSS Harmony Demo\nProvide a **Policy**, a **Prompt**, and see both **Analysis** and **Answer** separately.""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
with gr.Row():
|
| 96 |
+
with gr.Column(scale=1):
|
| 97 |
+
policy = gr.Textbox(label="Policy (system)", lines=20, placeholder="Enter the guiding rules and tone…")
|
| 98 |
+
prompt = gr.Textbox(label="Prompt (user)", lines=10, placeholder="Enter your main prompt…")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
with gr.Accordion("Advanced settings", open=False):
|
| 100 |
max_new_tokens = gr.Slider(16, 4096, value=DEFAULT_MAX_NEW_TOKENS, step=8, label="max_new_tokens")
|
| 101 |
temperature = gr.Slider(0.0, 1.5, value=DEFAULT_TEMPERATURE, step=0.05, label="temperature")
|
| 102 |
top_p = gr.Slider(0.0, 1.0, value=DEFAULT_TOP_P, step=0.01, label="top_p")
|
| 103 |
repetition_penalty = gr.Slider(0.8, 2.0, value=DEFAULT_REPETITION_PENALTY, step=0.05, label="repetition_penalty")
|
| 104 |
+
generate = gr.Button("Generate", variant="primary")
|
| 105 |
+
with gr.Column(scale=1):
|
| 106 |
+
analysis = gr.Textbox(label="Analysis (Harmony thinking)", lines=10)
|
| 107 |
+
answer = gr.Textbox(label="Answer", lines=10)
|
|
|
|
|
|
|
| 108 |
meta = gr.Markdown()
|
| 109 |
|
| 110 |
+
generate.click(
|
| 111 |
+
fn=generate_long_prompt,
|
| 112 |
inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty],
|
| 113 |
outputs=[analysis, answer, meta],
|
| 114 |
concurrency_limit=1,
|
| 115 |
api_name="generate",
|
| 116 |
)
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
if __name__ == "__main__":
|
| 119 |
demo.queue(max_size=32).launch()
|
requirements.txt
CHANGED
|
@@ -1,4 +1,2 @@
|
|
| 1 |
transformers
|
| 2 |
-
accelerate
|
| 3 |
-
triton
|
| 4 |
-
kernels
|
|
|
|
| 1 |
transformers
|
| 2 |
+
accelerate
|
|
|
|
|
|