Spaces:
Running
on
Zero
Running
on
Zero
Update app.py (#11)
Browse files- Update app.py (6c0e639f1c6795c66f42b01b8b6e103c71578d0e)
app.py
CHANGED
|
@@ -7,8 +7,8 @@ from transformers import pipeline
|
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
# === Config (override via Space secrets/env vars) ===
|
| 10 |
-
MODEL_ID = os.environ.get("MODEL_ID", "
|
| 11 |
-
STATIC_PROMPT = ""
|
| 12 |
DEFAULT_MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", 512))
|
| 13 |
DEFAULT_TEMPERATURE = float(os.environ.get("TEMPERATURE", 0.7))
|
| 14 |
DEFAULT_TOP_P = float(os.environ.get("TOP_P", 0.95))
|
|
@@ -16,30 +16,72 @@ DEFAULT_REPETITION_PENALTY = float(os.environ.get("REPETITION_PENALTY", 1.0))
|
|
| 16 |
ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120)) # seconds
|
| 17 |
|
| 18 |
_pipe = None # cached pipeline
|
| 19 |
-
_tok = None # tokenizer for parsing Harmony format
|
| 20 |
|
| 21 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
|
| 23 |
-
|
| 24 |
if policy.strip():
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
return
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
def
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
| 41 |
-
|
| 42 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 43 |
|
| 44 |
@spaces.GPU(duration=ZGPU_DURATION)
|
| 45 |
def generate_long_prompt(
|
|
@@ -50,7 +92,7 @@ def generate_long_prompt(
|
|
| 50 |
top_p: float,
|
| 51 |
repetition_penalty: float,
|
| 52 |
) -> Tuple[str, str, str]:
|
| 53 |
-
global _pipe
|
| 54 |
start = time.time()
|
| 55 |
|
| 56 |
if _pipe is None:
|
|
@@ -60,7 +102,6 @@ def generate_long_prompt(
|
|
| 60 |
torch_dtype="auto",
|
| 61 |
device_map="auto",
|
| 62 |
)
|
| 63 |
-
_tok = _pipe.tokenizer
|
| 64 |
|
| 65 |
messages = _to_messages(policy, prompt)
|
| 66 |
|
|
@@ -72,42 +113,54 @@ def generate_long_prompt(
|
|
| 72 |
top_p=top_p,
|
| 73 |
repetition_penalty=repetition_penalty,
|
| 74 |
)
|
| 75 |
-
print(outputs)
|
| 76 |
-
res = outputs[0]
|
| 77 |
-
print(res)
|
| 78 |
-
last = res.get("generated_text", [])
|
| 79 |
-
print(last)
|
| 80 |
-
if isinstance(last, list) and last:
|
| 81 |
-
last = last[-1]
|
| 82 |
|
| 83 |
-
|
|
|
|
| 84 |
|
| 85 |
elapsed = time.time() - start
|
| 86 |
meta = f"Model: {MODEL_ID} | Time: {elapsed:.1f}s | max_new_tokens={max_new_tokens}"
|
| 87 |
-
return
|
|
|
|
| 88 |
|
|
|
|
|
|
|
|
|
|
| 89 |
|
| 90 |
-
CUSTOM_CSS = "/**
|
| 91 |
|
| 92 |
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
|
| 93 |
-
gr.
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
|
| 95 |
with gr.Row():
|
| 96 |
-
with gr.Column(scale=1):
|
| 97 |
-
policy = gr.Textbox(
|
| 98 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 99 |
with gr.Accordion("Advanced settings", open=False):
|
| 100 |
max_new_tokens = gr.Slider(16, 4096, value=DEFAULT_MAX_NEW_TOKENS, step=8, label="max_new_tokens")
|
| 101 |
temperature = gr.Slider(0.0, 1.5, value=DEFAULT_TEMPERATURE, step=0.05, label="temperature")
|
| 102 |
top_p = gr.Slider(0.0, 1.0, value=DEFAULT_TOP_P, step=0.01, label="top_p")
|
| 103 |
repetition_penalty = gr.Slider(0.8, 2.0, value=DEFAULT_REPETITION_PENALTY, step=0.05, label="repetition_penalty")
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
| 108 |
meta = gr.Markdown()
|
| 109 |
|
| 110 |
-
|
| 111 |
fn=generate_long_prompt,
|
| 112 |
inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty],
|
| 113 |
outputs=[analysis, answer, meta],
|
|
@@ -115,5 +168,21 @@ with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
|
|
| 115 |
api_name="generate",
|
| 116 |
)
|
| 117 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
if __name__ == "__main__":
|
| 119 |
demo.queue(max_size=32).launch()
|
|
|
|
| 7 |
import spaces
|
| 8 |
|
| 9 |
# === Config (override via Space secrets/env vars) ===
|
| 10 |
+
MODEL_ID = os.environ.get("MODEL_ID", "tlhv/osb-minier")
|
| 11 |
+
STATIC_PROMPT = "" # optional extra system message
|
| 12 |
DEFAULT_MAX_NEW_TOKENS = int(os.environ.get("MAX_NEW_TOKENS", 512))
|
| 13 |
DEFAULT_TEMPERATURE = float(os.environ.get("TEMPERATURE", 0.7))
|
| 14 |
DEFAULT_TOP_P = float(os.environ.get("TOP_P", 0.95))
|
|
|
|
| 16 |
ZGPU_DURATION = int(os.environ.get("ZGPU_DURATION", 120)) # seconds
|
| 17 |
|
| 18 |
_pipe = None # cached pipeline
|
|
|
|
| 19 |
|
| 20 |
|
| 21 |
+
# ----------------------------
|
| 22 |
+
# Helpers (simple & explicit)
|
| 23 |
+
# ----------------------------
|
| 24 |
+
|
| 25 |
def _to_messages(policy: str, user_prompt: str) -> List[Dict[str, str]]:
|
| 26 |
+
msgs: List[Dict[str, str]] = []
|
| 27 |
if policy.strip():
|
| 28 |
+
msgs.append({"role": "system", "content": policy.strip()})
|
| 29 |
+
if STATIC_PROMPT:
|
| 30 |
+
msgs.append({"role": "system", "content": STATIC_PROMPT})
|
| 31 |
+
msgs.append({"role": "user", "content": user_prompt})
|
| 32 |
+
return msgs
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def _extract_assistant_content(outputs) -> str:
|
| 36 |
+
"""Extract the assistant's content from the known shape:
|
| 37 |
+
outputs = [
|
| 38 |
+
{
|
| 39 |
+
'generated_text': [
|
| 40 |
+
{'role': 'system', 'content': ...},
|
| 41 |
+
{'role': 'user', 'content': ...},
|
| 42 |
+
{'role': 'assistant', 'content': 'analysis...assistantfinal...'}
|
| 43 |
+
]
|
| 44 |
+
}
|
| 45 |
+
]
|
| 46 |
+
Keep this forgiving and minimal.
|
| 47 |
+
"""
|
| 48 |
+
try:
|
| 49 |
+
msgs = outputs[0]["generated_text"]
|
| 50 |
+
for m in reversed(msgs):
|
| 51 |
+
if isinstance(m, dict) and m.get("role") == "assistant":
|
| 52 |
+
return m.get("content", "")
|
| 53 |
+
last = msgs[-1]
|
| 54 |
+
return last.get("content", "") if isinstance(last, dict) else str(last)
|
| 55 |
+
except Exception:
|
| 56 |
+
return str(outputs)
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
def _parse_harmony_output_from_string(s: str) -> Tuple[str, str]:
|
| 60 |
+
"""Split a Harmony-style concatenated string into (analysis, final).
|
| 61 |
+
Expects markers 'analysis' ... 'assistantfinal'.
|
| 62 |
+
No heavy parsing — just string finds.
|
| 63 |
+
"""
|
| 64 |
+
if not isinstance(s, str):
|
| 65 |
+
s = str(s)
|
| 66 |
+
final_key = "assistantfinal"
|
| 67 |
+
j = s.find(final_key)
|
| 68 |
+
if j != -1:
|
| 69 |
+
final_text = s[j + len(final_key):].strip()
|
| 70 |
+
i = s.find("analysis")
|
| 71 |
+
if i != -1 and i < j:
|
| 72 |
+
analysis_text = s[i + len("analysis"): j].strip()
|
| 73 |
+
else:
|
| 74 |
+
analysis_text = s[:j].strip()
|
| 75 |
+
return analysis_text, final_text
|
| 76 |
+
# no explicit final marker
|
| 77 |
+
if s.startswith("analysis"):
|
| 78 |
+
return s[len("analysis"):].strip(), ""
|
| 79 |
+
return "", s.strip()
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
# ----------------------------
|
| 83 |
+
# Inference
|
| 84 |
+
# ----------------------------
|
| 85 |
|
| 86 |
@spaces.GPU(duration=ZGPU_DURATION)
|
| 87 |
def generate_long_prompt(
|
|
|
|
| 92 |
top_p: float,
|
| 93 |
repetition_penalty: float,
|
| 94 |
) -> Tuple[str, str, str]:
|
| 95 |
+
global _pipe
|
| 96 |
start = time.time()
|
| 97 |
|
| 98 |
if _pipe is None:
|
|
|
|
| 102 |
torch_dtype="auto",
|
| 103 |
device_map="auto",
|
| 104 |
)
|
|
|
|
| 105 |
|
| 106 |
messages = _to_messages(policy, prompt)
|
| 107 |
|
|
|
|
| 113 |
top_p=top_p,
|
| 114 |
repetition_penalty=repetition_penalty,
|
| 115 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 116 |
|
| 117 |
+
assistant_str = _extract_assistant_content(outputs)
|
| 118 |
+
analysis_text, final_text = _parse_harmony_output_from_string(assistant_str)
|
| 119 |
|
| 120 |
elapsed = time.time() - start
|
| 121 |
meta = f"Model: {MODEL_ID} | Time: {elapsed:.1f}s | max_new_tokens={max_new_tokens}"
|
| 122 |
+
return analysis_text or "(No analysis)", final_text or "(No answer)", meta
|
| 123 |
+
|
| 124 |
|
| 125 |
+
# ----------------------------
|
| 126 |
+
# UI
|
| 127 |
+
# ----------------------------
|
| 128 |
|
| 129 |
+
CUSTOM_CSS = "/** Pretty but simple **/\n:root { --radius: 14px; }\n.gradio-container { font-family: ui-sans-serif, system-ui, Inter, Roboto, Arial; }\n#hdr h1 { font-weight: 700; letter-spacing: -0.02em; }\ntextarea { font-family: ui-monospace, SFMono-Regular, Menlo, Monaco, Consolas, 'Liberation Mono', 'Courier New', monospace; }\nfooter { display:none; }\n"
|
| 130 |
|
| 131 |
with gr.Blocks(css=CUSTOM_CSS, theme=gr.themes.Soft()) as demo:
|
| 132 |
+
with gr.Column(elem_id="hdr"):
|
| 133 |
+
gr.Markdown("""
|
| 134 |
+
# GPT‑OSS (ZeroGPU) — Harmony View
|
| 135 |
+
Provide a **Policy**, a **Prompt**, and see **Analysis** and **Answer** separately.
|
| 136 |
+
""")
|
| 137 |
|
| 138 |
with gr.Row():
|
| 139 |
+
with gr.Column(scale=1, min_width=380):
|
| 140 |
+
policy = gr.Textbox(
|
| 141 |
+
label="Policy (system)",
|
| 142 |
+
lines=20, # bigger than prompt
|
| 143 |
+
placeholder="Rules, tone, and constraints…",
|
| 144 |
+
)
|
| 145 |
+
prompt = gr.Textbox(
|
| 146 |
+
label="Prompt (user)",
|
| 147 |
+
lines=10,
|
| 148 |
+
placeholder="Your request…",
|
| 149 |
+
)
|
| 150 |
with gr.Accordion("Advanced settings", open=False):
|
| 151 |
max_new_tokens = gr.Slider(16, 4096, value=DEFAULT_MAX_NEW_TOKENS, step=8, label="max_new_tokens")
|
| 152 |
temperature = gr.Slider(0.0, 1.5, value=DEFAULT_TEMPERATURE, step=0.05, label="temperature")
|
| 153 |
top_p = gr.Slider(0.0, 1.0, value=DEFAULT_TOP_P, step=0.01, label="top_p")
|
| 154 |
repetition_penalty = gr.Slider(0.8, 2.0, value=DEFAULT_REPETITION_PENALTY, step=0.05, label="repetition_penalty")
|
| 155 |
+
with gr.Row():
|
| 156 |
+
btn = gr.Button("Generate", variant="primary")
|
| 157 |
+
clr = gr.Button("Clear", variant="secondary")
|
| 158 |
+
with gr.Column(scale=1, min_width=380):
|
| 159 |
+
analysis = gr.Textbox(label="Analysis", lines=12)
|
| 160 |
+
answer = gr.Textbox(label="Answer", lines=12)
|
| 161 |
meta = gr.Markdown()
|
| 162 |
|
| 163 |
+
btn.click(
|
| 164 |
fn=generate_long_prompt,
|
| 165 |
inputs=[policy, prompt, max_new_tokens, temperature, top_p, repetition_penalty],
|
| 166 |
outputs=[analysis, answer, meta],
|
|
|
|
| 168 |
api_name="generate",
|
| 169 |
)
|
| 170 |
|
| 171 |
+
def _clear():
|
| 172 |
+
return "", "", "", ""
|
| 173 |
+
|
| 174 |
+
clr.click(_clear, outputs=[policy, prompt, analysis, answer])
|
| 175 |
+
|
| 176 |
+
gr.Examples(
|
| 177 |
+
examples=[
|
| 178 |
+
["Be concise and refuse unsafe requests.", "Explain transformers in 2 lines."],
|
| 179 |
+
[
|
| 180 |
+
"Friendly teacher: simple explanations, 1 example, end with 3 bullet key takeaways.",
|
| 181 |
+
"What is attention, briefly?",
|
| 182 |
+
],
|
| 183 |
+
],
|
| 184 |
+
inputs=[policy, prompt],
|
| 185 |
+
)
|
| 186 |
+
|
| 187 |
if __name__ == "__main__":
|
| 188 |
demo.queue(max_size=32).launch()
|