### 1. Imports and class names setup ### import gradio as gr import os import torch from model import create_vggface2_model from timeit import default_timer as timer from typing import Tuple, Dict # Setup class names class_names = ["real", "spoof"] # Setup device-agnostic code device = "cuda" if torch.cuda.is_available() else "cpu" ### 2. Model and transforms preparation ### # Create EffNetB2 model vggface2, data_transform = create_vggface2_model( num_classes=2, # len(class_names) would also work ) # Load saved weights vggface2.load_state_dict( torch.load( f="01_pretrained_vggface2_anti_spoof_18_3_11_2_2023_facenet.pth", map_location=torch.device("cpu"), # load to CPU ) ) ### 3. Predict function ### # Create predict function def predict(img):# -> Tuple[Dict, float]: """Transforms and performs a prediction on img and returns prediction and time taken. """ # Start the timer start_time = timer() # Transform the target image and add a batch dimension img = data_transform(img).unsqueeze(0).to(device) # Put model into evaluation mode and turn on inference mode vggface2.eval() with torch.inference_mode(): # Pass the transformed image through the model and turn the prediction logits into prediction probabilities pred_probs = torch.softmax(vggface2(img), dim=1) # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter) pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))} # Calculate the prediction time pred_time = round(timer() - start_time, 5) # Return the prediction dictionary and prediction time return pred_labels_and_probs, pred_time ### 4. Gradio app ### # Create title, description and article strings title = 'Liveness Detection System 🤖' description = 'A vggface2 pretrained computer vision model to classify images as spoof or real.' article = 'Prototype 1 for detecting liveness in an image' # Create examples list from "examples/" directory example_list = [["examples/" + example] for example in os.listdir("examples")] # Create the Gradio demo demo = gr.Interface(fn=predict, #mapping function from input to output inputs=gr.Image(type='pil'), #what are my inputs? outputs=[gr.Label(num_top_classes=2, label= 'Predictions'), #what are my outputs? gr.Number(label='Prediction time(s)')], #our fn has 2 outputs examples=example_list, title=title, description=description, article=article) #Launch the demo! demo.launch()