nraffa commited on
Commit
2d57b43
·
1 Parent(s): 6c57d04

first commit

Browse files
01_pretrained_vggface2_anti_spoof_18_3_11_2_2023_facenet.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1b0496847ff43a6b4e086b421de20cd6cf6359e0845d149a5fc92c044c580e2
3
+ size 94318271
app.py ADDED
@@ -0,0 +1,79 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ### 1. Imports and class names setup ###
2
+ import gradio as gr
3
+ import os
4
+ import torch
5
+
6
+ from model import create_vggface2_model
7
+ from timeit import default_timer as timer
8
+ from typing import Tuple, Dict
9
+
10
+ # Setup class names
11
+ class_names = ["real", "spoof"]
12
+
13
+ # Setup device-agnostic code
14
+ device = "cuda" if torch.cuda.is_available() else "cpu"
15
+
16
+ ### 2. Model and transforms preparation ###
17
+
18
+ # Create EffNetB2 model
19
+ vggface2, data_transform = create_vggface2_model(
20
+ num_classes=2, # len(class_names) would also work
21
+ )
22
+
23
+ # Load saved weights
24
+ vggface2.load_state_dict(
25
+ torch.load(
26
+ f="01_pretrained_vggface2_anti_spoof_18_3_11_2_2023_facenet.pth",
27
+ map_location=torch.device("cpu"), # load to CPU
28
+ )
29
+ )
30
+
31
+ ### 3. Predict function ###
32
+
33
+ # Create predict function
34
+ def predict(img):# -> Tuple[Dict, float]:
35
+ """Transforms and performs a prediction on img and returns prediction and time taken.
36
+ """
37
+ # Start the timer
38
+ start_time = timer()
39
+
40
+ # Transform the target image and add a batch dimension
41
+ img = data_transform(img).unsqueeze(0).to(device)
42
+
43
+ # Put model into evaluation mode and turn on inference mode
44
+ vggface2.eval()
45
+ with torch.inference_mode():
46
+ # Pass the transformed image through the model and turn the prediction logits into prediction probabilities
47
+ pred_probs = torch.softmax(vggface2(img), dim=1)
48
+
49
+ # Create a prediction label and prediction probability dictionary for each prediction class (this is the required format for Gradio's output parameter)
50
+ pred_labels_and_probs = {class_names[i]: float(pred_probs[0][i]) for i in range(len(class_names))}
51
+
52
+ # Calculate the prediction time
53
+ pred_time = round(timer() - start_time, 5)
54
+
55
+ # Return the prediction dictionary and prediction time
56
+ return pred_labels_and_probs, pred_time
57
+
58
+ ### 4. Gradio app ###
59
+
60
+ # Create title, description and article strings
61
+ title = 'Liveness Detection System 🤖'
62
+ description = 'A vggface2 pretrained computer vision model to classify images as spoof or real.'
63
+ article = 'Prototype 1 for detecting liveness in an image'
64
+
65
+ # Create examples list from "examples/" directory
66
+ example_list = [["examples/" + example] for example in os.listdir("examples")]
67
+
68
+ # Create the Gradio demo
69
+ demo = gr.Interface(fn=predict, #mapping function from input to output
70
+ inputs=gr.Image(type='pil'), #what are my inputs?
71
+ outputs=[gr.Label(num_top_classes=2, label= 'Predictions'), #what are my outputs?
72
+ gr.Number(label='Prediction time(s)')], #our fn has 2 outputs
73
+ examples=example_list,
74
+ title=title,
75
+ description=description,
76
+ article=article)
77
+
78
+ #Launch the demo!
79
+ demo.launch()
examples/HUAWEIP7L_id122_s0_105.png ADDED
examples/YOUTUBE_L1752S_SGS4M_id51_s0_75.png ADDED
examples/spoof_3192.png ADDED
model.py ADDED
@@ -0,0 +1,58 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torchvision
3
+ from torchvision import transforms
4
+
5
+ from torch import nn
6
+ from facenet_pytorch import InceptionResnetV1
7
+
8
+ def create_vggface2_model(num_classes:int=2,
9
+ seed:int=42):
10
+ """Creates an InceptionResnetV1 - Vggface2 model and transforms.
11
+
12
+ Args:
13
+ num_classes (int, optional): number of classes in the classifier head.
14
+ Defaults to 2.
15
+ seed (int, optional): random seed value. Defaults to 42.
16
+
17
+ Returns:
18
+ model (torch.nn.Module): vggface2 feature extractor model.
19
+ transforms (torchvision.transforms): vggface2 image transforms.
20
+ """
21
+ # load the saved model
22
+ model_pred = InceptionResnetV1(pretrained='vggface2' , classify = True , num_classes = 2).to(device)
23
+ layer_list = list(model_pred.children())[-5:] # all final layers
24
+ model_pred = nn.Sequential(*list(model_pred.children())[:-5])
25
+
26
+ for param in model_pred.parameters():
27
+ param.requires_grad = False
28
+
29
+ # Recreate the classifier layer and seed it to the target device
30
+ model_pred.classifier = torch.nn.Sequential(
31
+ torch.nn.AdaptiveAvgPool2d(output_size=1),
32
+ torch.nn.Dropout(p=0.6, inplace=False),
33
+ Flatten(),
34
+ torch.nn.Linear(in_features=1792,
35
+ out_features=512,
36
+ bias=False),
37
+ torch.nn.BatchNorm1d(512,
38
+ eps=0.001,
39
+ momentum=0.1,
40
+ affine=True,
41
+ track_running_stats=True),
42
+ torch.nn.Linear(in_features=512,
43
+ out_features=2, # same number of output units as our number of classes
44
+ bias=True))
45
+
46
+ model_pred = model_pred.to(device)
47
+
48
+ # Write transform for image
49
+ data_transform = transforms.Compose([
50
+ # Resize the images to 64x64 --> RECOMENDATION FROM TRAINING FROM FACENET --> 160x160
51
+ transforms.Resize(size=(160, 160)),
52
+ # Flip the images randomly on the horizontal
53
+ transforms.RandomHorizontalFlip(p=0.5), # p = probability of flip, 0.5 = 50% chance
54
+ # Turn the image into a torch.Tensor
55
+ transforms.ToTensor() # this also converts all pixel values from 0 to 255 to be between 0.0 and 1.0
56
+ ])
57
+
58
+ return model_pred, data_transform
requirements.txt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ torch==1.13.1
2
+ torchvision==0.13.0
3
+ gradio==3.1.4