Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -5,6 +5,7 @@ from sklearn.linear_model import LinearRegression
|
|
| 5 |
from sklearn.ensemble import RandomForestRegressor
|
| 6 |
from sklearn.preprocessing import StandardScaler
|
| 7 |
from sklearn.model_selection import train_test_split
|
|
|
|
| 8 |
from datetime import datetime, timedelta
|
| 9 |
import numpy as np
|
| 10 |
|
|
@@ -45,6 +46,10 @@ stock_data.dropna(inplace=True)
|
|
| 45 |
X = stock_data[['Open', 'High', 'Low', 'Volume', 'MA_10', 'MA_50', 'RSI', 'Return']]
|
| 46 |
y = stock_data['Close']
|
| 47 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 48 |
# Split the data
|
| 49 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 50 |
|
|
@@ -63,10 +68,21 @@ rf_model.fit(X_train_scaled, y_train)
|
|
| 63 |
|
| 64 |
# Predict future prices using ensemble method
|
| 65 |
future_dates = [stock_data['Date'].iloc[-1] + timedelta(days=x) for x in range(1, 15)]
|
| 66 |
-
future_df = pd.DataFrame(index=future_dates, columns=
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 67 |
future_df = future_df.fillna(method='ffill')
|
| 68 |
|
| 69 |
-
|
|
|
|
|
|
|
|
|
|
| 70 |
lr_predictions = lr_model.predict(future_X_scaled)
|
| 71 |
rf_predictions = rf_model.predict(future_X_scaled)
|
| 72 |
|
|
|
|
| 5 |
from sklearn.ensemble import RandomForestRegressor
|
| 6 |
from sklearn.preprocessing import StandardScaler
|
| 7 |
from sklearn.model_selection import train_test_split
|
| 8 |
+
from sklearn.impute import SimpleImputer
|
| 9 |
from datetime import datetime, timedelta
|
| 10 |
import numpy as np
|
| 11 |
|
|
|
|
| 46 |
X = stock_data[['Open', 'High', 'Low', 'Volume', 'MA_10', 'MA_50', 'RSI', 'Return']]
|
| 47 |
y = stock_data['Close']
|
| 48 |
|
| 49 |
+
# Handle missing values
|
| 50 |
+
imputer = SimpleImputer(strategy='mean')
|
| 51 |
+
X = imputer.fit_transform(X)
|
| 52 |
+
|
| 53 |
# Split the data
|
| 54 |
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
|
| 55 |
|
|
|
|
| 68 |
|
| 69 |
# Predict future prices using ensemble method
|
| 70 |
future_dates = [stock_data['Date'].iloc[-1] + timedelta(days=x) for x in range(1, 15)]
|
| 71 |
+
future_df = pd.DataFrame(index=future_dates, columns=stock_data.columns)
|
| 72 |
+
future_df['Open'] = stock_data['Open'].iloc[-1]
|
| 73 |
+
future_df['High'] = stock_data['High'].iloc[-1]
|
| 74 |
+
future_df['Low'] = stock_data['Low'].iloc[-1]
|
| 75 |
+
future_df['Volume'] = stock_data['Volume'].iloc[-1]
|
| 76 |
+
future_df['MA_10'] = stock_data['MA_10'].iloc[-1]
|
| 77 |
+
future_df['MA_50'] = stock_data['MA_50'].iloc[-1]
|
| 78 |
+
future_df['RSI'] = stock_data['RSI'].iloc[-1]
|
| 79 |
+
future_df['Return'] = stock_data['Return'].iloc[-1]
|
| 80 |
future_df = future_df.fillna(method='ffill')
|
| 81 |
|
| 82 |
+
# Handle missing values in future data
|
| 83 |
+
future_X = imputer.transform(future_df[['Open', 'High', 'Low', 'Volume', 'MA_10', 'MA_50', 'RSI', 'Return']])
|
| 84 |
+
future_X_scaled = scaler.transform(future_X)
|
| 85 |
+
|
| 86 |
lr_predictions = lr_model.predict(future_X_scaled)
|
| 87 |
rf_predictions = rf_model.predict(future_X_scaled)
|
| 88 |
|