Umadevi0305 commited on
Commit
786e60e
·
verified ·
1 Parent(s): 84c2b2a

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +10 -261
README.md CHANGED
@@ -1,261 +1,10 @@
1
- # F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching
2
-
3
- [![python](https://img.shields.io/badge/Python-3.10-brightgreen)](https://github.com/SWivid/F5-TTS)
4
- [![arXiv](https://img.shields.io/badge/arXiv-2410.06885-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2410.06885)
5
- [![demo](https://img.shields.io/badge/GitHub-Demo%20page-orange.svg)](https://swivid.github.io/F5-TTS/)
6
- [![hfspace](https://img.shields.io/badge/🤗-Space%20demo-yellow)](https://huggingface.co/spaces/mrfakename/E2-F5-TTS)
7
- [![msspace](https://img.shields.io/badge/🤖-Space%20demo-blue)](https://modelscope.cn/studios/modelscope/E2-F5-TTS)
8
- [![lab](https://img.shields.io/badge/X--LANCE-Lab-grey?labelColor=lightgrey)](https://x-lance.sjtu.edu.cn/)
9
- [![lab](https://img.shields.io/badge/Peng%20Cheng-Lab-grey?labelColor=lightgrey)](https://www.pcl.ac.cn)
10
- <!-- <img src="https://github.com/user-attachments/assets/12d7749c-071a-427c-81bf-b87b91def670" alt="Watermark" style="width: 40px; height: auto"> -->
11
-
12
- **F5-TTS**: Diffusion Transformer with ConvNeXt V2, faster trained and inference.
13
-
14
- **E2 TTS**: Flat-UNet Transformer, closest reproduction from [paper](https://arxiv.org/abs/2406.18009).
15
-
16
- **Sway Sampling**: Inference-time flow step sampling strategy, greatly improves performance
17
-
18
- ### Thanks to all the contributors !
19
-
20
- ## News
21
- - **2025/03/12**: 🔥 F5-TTS v1 base model with better training and inference performance. [Few demo](https://swivid.github.io/F5-TTS_updates).
22
- - **2024/10/08**: F5-TTS & E2 TTS base models on [🤗 Hugging Face](https://huggingface.co/SWivid/F5-TTS), [🤖 Model Scope](https://www.modelscope.cn/models/SWivid/F5-TTS_Emilia-ZH-EN), [🟣 Wisemodel](https://wisemodel.cn/models/SJTU_X-LANCE/F5-TTS_Emilia-ZH-EN).
23
-
24
- ## Installation
25
-
26
- ### Create a separate environment if needed
27
-
28
- ```bash
29
- # Create a python 3.10 conda env (you could also use virtualenv)
30
- conda create -n f5-tts python=3.10
31
- conda activate f5-tts
32
- ```
33
-
34
- ### Install PyTorch with matched device
35
-
36
- <details>
37
- <summary>NVIDIA GPU</summary>
38
-
39
- > ```bash
40
- > # Install pytorch with your CUDA version, e.g.
41
- > pip install torch==2.4.0+cu124 torchaudio==2.4.0+cu124 --extra-index-url https://download.pytorch.org/whl/cu124
42
- > ```
43
-
44
- </details>
45
-
46
- <details>
47
- <summary>AMD GPU</summary>
48
-
49
- > ```bash
50
- > # Install pytorch with your ROCm version (Linux only), e.g.
51
- > pip install torch==2.5.1+rocm6.2 torchaudio==2.5.1+rocm6.2 --extra-index-url https://download.pytorch.org/whl/rocm6.2
52
- > ```
53
-
54
- </details>
55
-
56
- <details>
57
- <summary>Intel GPU</summary>
58
-
59
- > ```bash
60
- > # Install pytorch with your XPU version, e.g.
61
- > # Intel® Deep Learning Essentials or Intel® oneAPI Base Toolkit must be installed
62
- > pip install torch torchaudio --index-url https://download.pytorch.org/whl/test/xpu
63
- >
64
- > # Intel GPU support is also available through IPEX (Intel® Extension for PyTorch)
65
- > # IPEX does not require the Intel® Deep Learning Essentials or Intel® oneAPI Base Toolkit
66
- > # See: https://pytorch-extension.intel.com/installation?request=platform
67
- > ```
68
-
69
- </details>
70
-
71
- <details>
72
- <summary>Apple Silicon</summary>
73
-
74
- > ```bash
75
- > # Install the stable pytorch, e.g.
76
- > pip install torch torchaudio
77
- > ```
78
-
79
- </details>
80
-
81
- ### Then you can choose one from below:
82
-
83
- > ### 1. As a pip package (if just for inference)
84
- >
85
- > ```bash
86
- > pip install f5-tts
87
- > ```
88
- >
89
- > ### 2. Local editable (if also do training, finetuning)
90
- >
91
- > ```bash
92
- > git clone https://github.com/SWivid/F5-TTS.git
93
- > cd F5-TTS
94
- > # git submodule update --init --recursive # (optional, if use bigvgan as vocoder)
95
- > pip install -e .
96
- > ```
97
-
98
- ### Docker usage also available
99
- ```bash
100
- # Build from Dockerfile
101
- docker build -t f5tts:v1 .
102
-
103
- # Run from GitHub Container Registry
104
- docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main
105
-
106
- # Quickstart if you want to just run the web interface (not CLI)
107
- docker container run --rm -it --gpus=all --mount 'type=volume,source=f5-tts,target=/root/.cache/huggingface/hub/' -p 7860:7860 ghcr.io/swivid/f5-tts:main f5-tts_infer-gradio --host 0.0.0.0
108
- ```
109
-
110
- ### Runtime
111
-
112
- Deployment solution with Triton and TensorRT-LLM.
113
-
114
- #### Benchmark Results
115
- Decoding on a single L20 GPU, using 26 different prompt_audio & target_text pairs, 16 NFE.
116
-
117
- | Model | Concurrency | Avg Latency | RTF | Mode |
118
- |---------------------|----------------|-------------|--------|-----------------|
119
- | F5-TTS Base (Vocos) | 2 | 253 ms | 0.0394 | Client-Server |
120
- | F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.0402 | Offline TRT-LLM |
121
- | F5-TTS Base (Vocos) | 1 (Batch_size) | - | 0.1467 | Offline Pytorch |
122
-
123
- See [detailed instructions](src/f5_tts/runtime/triton_trtllm/README.md) for more information.
124
-
125
-
126
- ## Inference
127
-
128
- - In order to achieve desired performance, take a moment to read [detailed guidance](src/f5_tts/infer).
129
- - By properly searching the keywords of problem encountered, [issues](https://github.com/SWivid/F5-TTS/issues?q=is%3Aissue) are very helpful.
130
-
131
- ### 1. Gradio App
132
-
133
- Currently supported features:
134
-
135
- - Basic TTS with Chunk Inference
136
- - Multi-Style / Multi-Speaker Generation
137
- - Voice Chat powered by Qwen2.5-3B-Instruct
138
- - [Custom inference with more language support](src/f5_tts/infer/SHARED.md)
139
-
140
- ```bash
141
- # Launch a Gradio app (web interface)
142
- f5-tts_infer-gradio
143
-
144
- # Specify the port/host
145
- f5-tts_infer-gradio --port 7860 --host 0.0.0.0
146
-
147
- # Launch a share link
148
- f5-tts_infer-gradio --share
149
- ```
150
-
151
- <details>
152
- <summary>NVIDIA device docker compose file example</summary>
153
-
154
- ```yaml
155
- services:
156
- f5-tts:
157
- image: ghcr.io/swivid/f5-tts:main
158
- ports:
159
- - "7860:7860"
160
- environment:
161
- GRADIO_SERVER_PORT: 7860
162
- entrypoint: ["f5-tts_infer-gradio", "--port", "7860", "--host", "0.0.0.0"]
163
- deploy:
164
- resources:
165
- reservations:
166
- devices:
167
- - driver: nvidia
168
- count: 1
169
- capabilities: [gpu]
170
-
171
- volumes:
172
- f5-tts:
173
- driver: local
174
- ```
175
-
176
- </details>
177
-
178
- ### 2. CLI Inference
179
-
180
- ```bash
181
- # Run with flags
182
- # Leave --ref_text "" will have ASR model transcribe (extra GPU memory usage)
183
- f5-tts_infer-cli --model F5TTS_v1_Base \
184
- --ref_audio "provide_prompt_wav_path_here.wav" \
185
- --ref_text "The content, subtitle or transcription of reference audio." \
186
- --gen_text "Some text you want TTS model generate for you."
187
-
188
- # Run with default setting. src/f5_tts/infer/examples/basic/basic.toml
189
- f5-tts_infer-cli
190
- # Or with your own .toml file
191
- f5-tts_infer-cli -c custom.toml
192
-
193
- # Multi voice. See src/f5_tts/infer/README.md
194
- f5-tts_infer-cli -c src/f5_tts/infer/examples/multi/story.toml
195
- ```
196
-
197
-
198
- ## Training
199
-
200
- ### 1. With Hugging Face Accelerate
201
-
202
- Refer to [training & finetuning guidance](src/f5_tts/train) for best practice.
203
-
204
- ### 2. With Gradio App
205
-
206
- ```bash
207
- # Quick start with Gradio web interface
208
- f5-tts_finetune-gradio
209
- ```
210
-
211
- Read [training & finetuning guidance](src/f5_tts/train) for more instructions.
212
-
213
-
214
- ## [Evaluation](src/f5_tts/eval)
215
-
216
-
217
- ## Development
218
-
219
- Use pre-commit to ensure code quality (will run linters and formatters automatically):
220
-
221
- ```bash
222
- pip install pre-commit
223
- pre-commit install
224
- ```
225
-
226
- When making a pull request, before each commit, run:
227
-
228
- ```bash
229
- pre-commit run --all-files
230
- ```
231
-
232
- Note: Some model components have linting exceptions for E722 to accommodate tensor notation.
233
-
234
-
235
- ## Acknowledgements
236
-
237
- - [E2-TTS](https://arxiv.org/abs/2406.18009) brilliant work, simple and effective
238
- - [Emilia](https://arxiv.org/abs/2407.05361), [WenetSpeech4TTS](https://arxiv.org/abs/2406.05763), [LibriTTS](https://arxiv.org/abs/1904.02882), [LJSpeech](https://keithito.com/LJ-Speech-Dataset/) valuable datasets
239
- - [lucidrains](https://github.com/lucidrains) initial CFM structure with also [bfs18](https://github.com/bfs18) for discussion
240
- - [SD3](https://arxiv.org/abs/2403.03206) & [Hugging Face diffusers](https://github.com/huggingface/diffusers) DiT and MMDiT code structure
241
- - [torchdiffeq](https://github.com/rtqichen/torchdiffeq) as ODE solver, [Vocos](https://huggingface.co/charactr/vocos-mel-24khz) and [BigVGAN](https://github.com/NVIDIA/BigVGAN) as vocoder
242
- - [FunASR](https://github.com/modelscope/FunASR), [faster-whisper](https://github.com/SYSTRAN/faster-whisper), [UniSpeech](https://github.com/microsoft/UniSpeech), [SpeechMOS](https://github.com/tarepan/SpeechMOS) for evaluation tools
243
- - [ctc-forced-aligner](https://github.com/MahmoudAshraf97/ctc-forced-aligner) for speech edit test
244
- - [mrfakename](https://x.com/realmrfakename) huggingface space demo ~
245
- - [f5-tts-mlx](https://github.com/lucasnewman/f5-tts-mlx/tree/main) Implementation with MLX framework by [Lucas Newman](https://github.com/lucasnewman)
246
- - [F5-TTS-ONNX](https://github.com/DakeQQ/F5-TTS-ONNX) ONNX Runtime version by [DakeQQ](https://github.com/DakeQQ)
247
- - [Yuekai Zhang](https://github.com/yuekaizhang) Triton and TensorRT-LLM support ~
248
-
249
- ## Citation
250
- If our work and codebase is useful for you, please cite as:
251
- ```
252
- @article{chen-etal-2024-f5tts,
253
- title={F5-TTS: A Fairytaler that Fakes Fluent and Faithful Speech with Flow Matching},
254
- author={Yushen Chen and Zhikang Niu and Ziyang Ma and Keqi Deng and Chunhui Wang and Jian Zhao and Kai Yu and Xie Chen},
255
- journal={arXiv preprint arXiv:2410.06885},
256
- year={2024},
257
- }
258
- ```
259
- ## License
260
-
261
- Our code is released under MIT License. The pre-trained models are licensed under the CC-BY-NC license due to the training data Emilia, which is an in-the-wild dataset. Sorry for any inconvenience this may cause.
 
1
+ ---
2
+ title: F5-TTS Fine-tuned Demo
3
+ emoji: 🎙️
4
+ colorFrom: indigo
5
+ colorTo: pink
6
+ sdk: gradio
7
+ sdk_version: "4.29.0"
8
+ app_file: app.py
9
+ pinned: false
10
+ ---