Spaces:
Runtime error
Runtime error
Commit
·
fd6aade
1
Parent(s):
1385d75
fix app.py to read from saved poem_embeddings.json
Browse files- app.py +8 -4
- inference.py +64 -8
app.py
CHANGED
|
@@ -3,6 +3,7 @@ from inference import predict_poems_from_text
|
|
| 3 |
from utils import get_poem_embeddings
|
| 4 |
import config as CFG
|
| 5 |
import json
|
|
|
|
| 6 |
import gradio as gr
|
| 7 |
|
| 8 |
def greet_user(name):
|
|
@@ -12,15 +13,18 @@ if __name__ == "__main__":
|
|
| 12 |
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
|
| 13 |
model.eval()
|
| 14 |
# Inference: Output some example predictions and write them in a file
|
| 15 |
-
with open(
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
def gradio_make_predictions(text):
|
| 19 |
-
beyts = predict_poems_from_text(model, poem_embeddings, text,
|
| 20 |
return "\n".join(beyts)
|
| 21 |
|
| 22 |
CFG.batch_size = 512
|
| 23 |
-
model, poem_embeddings = get_poem_embeddings(dataset, model)
|
| 24 |
# print(poem_embeddings[0])
|
| 25 |
# with open('poem_embeddings.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
| 26 |
# f.write(json.dumps(poem_embeddings, indent= 4))
|
|
|
|
| 3 |
from utils import get_poem_embeddings
|
| 4 |
import config as CFG
|
| 5 |
import json
|
| 6 |
+
import torch
|
| 7 |
import gradio as gr
|
| 8 |
|
| 9 |
def greet_user(name):
|
|
|
|
| 13 |
model = PoemTextModel(poem_encoder_pretrained=True, text_encoder_pretrained=True).to(CFG.device)
|
| 14 |
model.eval()
|
| 15 |
# Inference: Output some example predictions and write them in a file
|
| 16 |
+
with open('poem_embeddings.json', encoding="utf-8") as f:
|
| 17 |
+
pe = json.load(f)
|
| 18 |
+
|
| 19 |
+
poem_embeddings = torch.Tensor([p['embeddings'] for p in pe]).to(CFG.device)
|
| 20 |
+
print(poem_embeddings.shape)
|
| 21 |
+
poems = [p['beyt'] for p in pe]
|
| 22 |
|
| 23 |
def gradio_make_predictions(text):
|
| 24 |
+
beyts = predict_poems_from_text(model, poem_embeddings, text, poems, n=10)
|
| 25 |
return "\n".join(beyts)
|
| 26 |
|
| 27 |
CFG.batch_size = 512
|
|
|
|
| 28 |
# print(poem_embeddings[0])
|
| 29 |
# with open('poem_embeddings.json'.format(CFG.poem_encoder_model, CFG.text_encoder_model),'w', encoding="utf-8") as f:
|
| 30 |
# f.write(json.dumps(poem_embeddings, indent= 4))
|
inference.py
CHANGED
|
@@ -12,9 +12,10 @@ from models import PoemTextModel
|
|
| 12 |
from utils import get_poem_embeddings
|
| 13 |
import json
|
| 14 |
import os
|
|
|
|
| 15 |
|
| 16 |
|
| 17 |
-
def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer=None, n=10):
|
| 18 |
"""
|
| 19 |
Returns n poems which are the most similar to a text query
|
| 20 |
|
|
@@ -32,6 +33,8 @@ def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer
|
|
| 32 |
tokenizer to tokenize query with. if none, will instantiate a new text tokenizer using configs.
|
| 33 |
n: int, optional
|
| 34 |
number of poems to return
|
|
|
|
|
|
|
| 35 |
|
| 36 |
Returns:
|
| 37 |
--------
|
|
@@ -63,11 +66,36 @@ def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer
|
|
| 63 |
dot_similarity = text_embeddings_n @ poem_embeddings_n.T
|
| 64 |
|
| 65 |
# returning top n poems based on embedding similarity
|
| 66 |
-
|
| 67 |
-
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
"""
|
| 72 |
Returns n poems which are the most similar to an image query
|
| 73 |
|
|
@@ -83,6 +111,8 @@ def predict_poems_from_image(model, poem_embeddings, image_filename, poems, n=10
|
|
| 83 |
poems corresponding to poem_embeddings
|
| 84 |
n: int, optional
|
| 85 |
number of poems to return
|
|
|
|
|
|
|
| 86 |
|
| 87 |
Returns:
|
| 88 |
--------
|
|
@@ -107,8 +137,34 @@ def predict_poems_from_image(model, poem_embeddings, image_filename, poems, n=10
|
|
| 107 |
dot_similarity = image_embeddings_n @ poem_embeddings_n.T
|
| 108 |
|
| 109 |
# returning top n poems based on embedding similarity
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
|
| 113 |
if __name__ == "__main__":
|
| 114 |
"""
|
|
|
|
| 12 |
from utils import get_poem_embeddings
|
| 13 |
import json
|
| 14 |
import os
|
| 15 |
+
import regex
|
| 16 |
|
| 17 |
|
| 18 |
+
def predict_poems_from_text(model, poem_embeddings, query, poems, text_tokenizer=None, n=10, return_similarities=False):
|
| 19 |
"""
|
| 20 |
Returns n poems which are the most similar to a text query
|
| 21 |
|
|
|
|
| 33 |
tokenizer to tokenize query with. if none, will instantiate a new text tokenizer using configs.
|
| 34 |
n: int, optional
|
| 35 |
number of poems to return
|
| 36 |
+
return_similarities: bool, optional
|
| 37 |
+
if True, a dictionary will be returned which has the poem beyts and their similarities to the text
|
| 38 |
|
| 39 |
Returns:
|
| 40 |
--------
|
|
|
|
| 66 |
dot_similarity = text_embeddings_n @ poem_embeddings_n.T
|
| 67 |
|
| 68 |
# returning top n poems based on embedding similarity
|
| 69 |
+
values, indices = torch.topk(dot_similarity.squeeze(0), len(poems))
|
| 70 |
+
|
| 71 |
+
# since we collected poems from many sources, some of them are equal (the same beyt with different meanings),
|
| 72 |
+
# so we must check the poems added to result not to be duplicates
|
| 73 |
+
def is_poem_duplicate(poem, poems):
|
| 74 |
+
poem = regex.findall(r'\p{L}+', poem.replace('\u200c', ''))
|
| 75 |
+
for other_poem in poems:
|
| 76 |
+
other_poem = regex.findall(r'\p{L}+', other_poem.replace('\u200c', ''))
|
| 77 |
+
if poem == other_poem:
|
| 78 |
+
return True
|
| 79 |
+
return False
|
| 80 |
+
|
| 81 |
+
results = []
|
| 82 |
+
computed_k = 0
|
| 83 |
+
for i in range(len(poems)):
|
| 84 |
+
if computed_k == n:
|
| 85 |
+
break
|
| 86 |
+
if not is_poem_duplicate(poems[indices[i]], [res['beyt'] for res in results]):
|
| 87 |
+
results.append({
|
| 88 |
+
'beyt': poems[indices[i]].replace(' * * ', ' * ').replace('*** * ', ''),
|
| 89 |
+
'similarity': values[i]
|
| 90 |
+
})
|
| 91 |
+
computed_k += 1
|
| 92 |
+
if return_similarities:
|
| 93 |
+
return results
|
| 94 |
+
else:
|
| 95 |
+
return [res['beyt'] for res in results]
|
| 96 |
+
|
| 97 |
+
|
| 98 |
+
def predict_poems_from_image(model, poem_embeddings, image_filename, poems, n=10, return_similarities=False):
|
| 99 |
"""
|
| 100 |
Returns n poems which are the most similar to an image query
|
| 101 |
|
|
|
|
| 111 |
poems corresponding to poem_embeddings
|
| 112 |
n: int, optional
|
| 113 |
number of poems to return
|
| 114 |
+
return_similarities: bool, optional
|
| 115 |
+
if True, a dictionary will be returned which has the poem beyts and their similarities to the text
|
| 116 |
|
| 117 |
Returns:
|
| 118 |
--------
|
|
|
|
| 137 |
dot_similarity = image_embeddings_n @ poem_embeddings_n.T
|
| 138 |
|
| 139 |
# returning top n poems based on embedding similarity
|
| 140 |
+
values, indices = torch.topk(dot_similarity.squeeze(0), len(poems))
|
| 141 |
+
|
| 142 |
+
# since we collected poems from many sources, some of them are equal (the same beyt with different meanings),
|
| 143 |
+
# so we must check the poems added to result not to be duplicates
|
| 144 |
+
def is_poem_duplicate(poem, poems):
|
| 145 |
+
poem = regex.findall(r'\p{L}+', poem.replace('\u200c', ''))
|
| 146 |
+
for other_poem in poems:
|
| 147 |
+
other_poem = regex.findall(r'\p{L}+', other_poem.replace('\u200c', ''))
|
| 148 |
+
if poem == other_poem:
|
| 149 |
+
return True
|
| 150 |
+
return False
|
| 151 |
+
|
| 152 |
+
results = []
|
| 153 |
+
computed_k = 0
|
| 154 |
+
for i in range(len(poems)):
|
| 155 |
+
if computed_k == n:
|
| 156 |
+
break
|
| 157 |
+
if not is_poem_duplicate(poems[indices[i]], [res['beyt'] for res in results]):
|
| 158 |
+
results.append({
|
| 159 |
+
'beyt': poems[indices[i]].replace(' * * ', ' * ').replace('*** * ', ''),
|
| 160 |
+
'similarity': values[i]
|
| 161 |
+
})
|
| 162 |
+
computed_k += 1
|
| 163 |
+
if return_similarities:
|
| 164 |
+
return results
|
| 165 |
+
else:
|
| 166 |
+
return [res['beyt'] for res in results]
|
| 167 |
+
|
| 168 |
|
| 169 |
if __name__ == "__main__":
|
| 170 |
"""
|