import gradio as gr from matplotlib import gridspec import matplotlib.pyplot as plt import numpy as np from PIL import Image import torch from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation # ============================== # ✅ 모델 로드 # ============================== MODEL_ID = "nvidia/segformer-b2-finetuned-cityscapes-1024-1024" processor = AutoImageProcessor.from_pretrained(MODEL_ID) model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID) # ============================== # ✅ 팔레트 / 라벨 로드 # ============================== def city_palette(): return [ [128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], [153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], [70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], [0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32] ] colormap = np.asarray(city_palette(), dtype=np.uint8) labels_list = [l.strip() for l in open("labels.txt", "r", encoding="utf-8").readlines()] def label_to_color_image(label): if label.ndim != 2: raise ValueError("Expect 2-D input label") if np.max(label) >= len(colormap): raise ValueError("Label value too large.") return colormap[label] # ============================== # ✅ 시각화 함수 # ============================== def draw_plot(pred_img, seg_np): fig = plt.figure(figsize=(20, 15)) grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) plt.subplot(grid_spec[0]) plt.imshow(pred_img) plt.axis('off') LABEL_NAMES = np.asarray(labels_list) FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) unique_labels = np.unique(seg_np.astype("uint8")) ax = plt.subplot(grid_spec[1]) plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") ax.yaxis.tick_right() plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) plt.xticks([], []) ax.tick_params(width=0.0, labelsize=22) plt.tight_layout() return fig # ============================== # ✅ 추론 함수 # ============================== def run_inference(input_img): img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img if img.mode != "RGB": img = img.convert("RGB") inputs = processor(images=img, return_tensors="pt") with torch.no_grad(): outputs = model(**inputs) logits = outputs.logits upsampled = torch.nn.functional.interpolate( logits, size=img.size[::-1], mode="bilinear", align_corners=False ) seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) color_seg = colormap[seg] pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) return draw_plot(pred_img, seg) # ============================== # 🌆 Gradio UI 구성 # ============================== with gr.Blocks(theme=gr.themes.Soft(), css=""" #title {text-align:center; font-size:2.2em; font-weight:700; margin-bottom:0.5em;} #desc {text-align:center; color:#555; font-size:1.1em; margin-bottom:2em;} #footer {text-align:center; color:#888; margin-top:2em; font-size:0.9em;} """) as demo: gr.Markdown("