|
|
import gradio as gr |
|
|
from matplotlib import gridspec |
|
|
import matplotlib.pyplot as plt |
|
|
import numpy as np |
|
|
from PIL import Image |
|
|
import torch |
|
|
from transformers import AutoImageProcessor, AutoModelForSemanticSegmentation |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_ID = "nvidia/segformer-b2-finetuned-cityscapes-1024-1024" |
|
|
processor = AutoImageProcessor.from_pretrained(MODEL_ID) |
|
|
model = AutoModelForSemanticSegmentation.from_pretrained(MODEL_ID) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def city_palette(): |
|
|
return [ |
|
|
[128, 64, 128], [244, 35, 232], [70, 70, 70], [102, 102, 156], [190, 153, 153], |
|
|
[153, 153, 153], [250, 170, 30], [220, 220, 0], [107, 142, 35], [152, 251, 152], |
|
|
[70, 130, 180], [220, 20, 60], [255, 0, 0], [0, 0, 142], [0, 0, 70], |
|
|
[0, 60, 100], [0, 80, 100], [0, 0, 230], [119, 11, 32] |
|
|
] |
|
|
|
|
|
colormap = np.asarray(city_palette(), dtype=np.uint8) |
|
|
labels_list = [l.strip() for l in open("labels.txt", "r", encoding="utf-8").readlines()] |
|
|
|
|
|
def label_to_color_image(label): |
|
|
if label.ndim != 2: |
|
|
raise ValueError("Expect 2-D input label") |
|
|
if np.max(label) >= len(colormap): |
|
|
raise ValueError("Label value too large.") |
|
|
return colormap[label] |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def draw_plot(pred_img, seg_np): |
|
|
fig = plt.figure(figsize=(20, 15)) |
|
|
grid_spec = gridspec.GridSpec(1, 2, width_ratios=[6, 1]) |
|
|
|
|
|
plt.subplot(grid_spec[0]) |
|
|
plt.imshow(pred_img) |
|
|
plt.axis('off') |
|
|
|
|
|
LABEL_NAMES = np.asarray(labels_list) |
|
|
FULL_LABEL_MAP = np.arange(len(LABEL_NAMES)).reshape(len(LABEL_NAMES), 1) |
|
|
FULL_COLOR_MAP = label_to_color_image(FULL_LABEL_MAP) |
|
|
|
|
|
unique_labels = np.unique(seg_np.astype("uint8")) |
|
|
ax = plt.subplot(grid_spec[1]) |
|
|
plt.imshow(FULL_COLOR_MAP[unique_labels].astype(np.uint8), interpolation="nearest") |
|
|
ax.yaxis.tick_right() |
|
|
plt.yticks(range(len(unique_labels)), LABEL_NAMES[unique_labels]) |
|
|
plt.xticks([], []) |
|
|
ax.tick_params(width=0.0, labelsize=22) |
|
|
plt.tight_layout() |
|
|
return fig |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def run_inference(input_img): |
|
|
img = Image.fromarray(input_img.astype(np.uint8)) if isinstance(input_img, np.ndarray) else input_img |
|
|
if img.mode != "RGB": |
|
|
img = img.convert("RGB") |
|
|
|
|
|
inputs = processor(images=img, return_tensors="pt") |
|
|
with torch.no_grad(): |
|
|
outputs = model(**inputs) |
|
|
logits = outputs.logits |
|
|
|
|
|
upsampled = torch.nn.functional.interpolate( |
|
|
logits, size=img.size[::-1], mode="bilinear", align_corners=False |
|
|
) |
|
|
seg = upsampled.argmax(dim=1)[0].cpu().numpy().astype(np.uint8) |
|
|
color_seg = colormap[seg] |
|
|
pred_img = (np.array(img) * 0.5 + color_seg * 0.5).astype(np.uint8) |
|
|
return draw_plot(pred_img, seg) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
with gr.Blocks(theme=gr.themes.Soft(), css=""" |
|
|
#title {text-align:center; font-size:2.2em; font-weight:700; margin-bottom:0.5em;} |
|
|
#desc {text-align:center; color:#555; font-size:1.1em; margin-bottom:2em;} |
|
|
#footer {text-align:center; color:#888; margin-top:2em; font-size:0.9em;} |
|
|
""") as demo: |
|
|
|
|
|
gr.Markdown("<div id='title'>ποΈ City Segmenter</div>") |
|
|
gr.Markdown("<div id='desc'>SegFormer-B2 κΈ°λ° λμ μ΄λ―Έμ§ μΈκ·Έλ©ν
μ΄μ
.<br>λλ‘, 건물, μ°¨λ, μ¬λ λ±μ μμμΌλ‘ λΆλ¦¬νμ¬ μκ°νν©λλ€.</div>") |
|
|
|
|
|
with gr.Row(): |
|
|
with gr.Column(scale=1): |
|
|
input_img = gr.Image(type="numpy", label="π€ μ΄λ―Έμ§ μ
λ‘λ") |
|
|
example_box = gr.Examples( |
|
|
examples=[ |
|
|
"city1.jpeg", |
|
|
"city2.jpg", |
|
|
"city3.jpg" |
|
|
], |
|
|
inputs=input_img, |
|
|
label="πΌοΈ μμ μ΄λ―Έμ§" |
|
|
) |
|
|
run_btn = gr.Button("π λΆμ μμ", variant="primary") |
|
|
with gr.Column(scale=2): |
|
|
output_plot = gr.Plot(label="π§ κ²°κ³Ό μκ°ν (Overlay + Legend)") |
|
|
|
|
|
run_btn.click(fn=run_inference, inputs=input_img, outputs=output_plot) |
|
|
|
|
|
gr.Markdown("<div id='footer'>Β© 2025 City Segmenter β’ Powered by NVIDIA SegFormer-B2</div>") |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |
|
|
|
|
|
|