Spaces:
Runtime error
Runtime error
Johannes
commited on
Commit
Β·
80019c9
1
Parent(s):
c18005d
init
Browse files- README.md +2 -2
- app.py +234 -0
- requirements.txt +2 -0
README.md
CHANGED
|
@@ -1,8 +1,8 @@
|
|
| 1 |
---
|
| 2 |
title: Species Distribution Modeling
|
| 3 |
-
emoji:
|
| 4 |
colorFrom: green
|
| 5 |
-
colorTo:
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.35.2
|
| 8 |
app_file: app.py
|
|
|
|
| 1 |
---
|
| 2 |
title: Species Distribution Modeling
|
| 3 |
+
emoji: π¦₯π
|
| 4 |
colorFrom: green
|
| 5 |
+
colorTo: white
|
| 6 |
sdk: gradio
|
| 7 |
sdk_version: 3.35.2
|
| 8 |
app_file: app.py
|
app.py
ADDED
|
@@ -0,0 +1,234 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
from time import time
|
| 3 |
+
|
| 4 |
+
import numpy as np
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
|
| 7 |
+
from sklearn.utils import Bunch
|
| 8 |
+
from sklearn.datasets import fetch_species_distributions
|
| 9 |
+
from sklearn import svm, metrics
|
| 10 |
+
|
| 11 |
+
from typing import Union
|
| 12 |
+
|
| 13 |
+
try:
|
| 14 |
+
from mpl_toolkits.basemap import Basemap
|
| 15 |
+
|
| 16 |
+
basemap = True
|
| 17 |
+
except ImportError:
|
| 18 |
+
basemap = False
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
def construct_grids(batch):
|
| 22 |
+
"""Construct the map grid from the batch object
|
| 23 |
+
|
| 24 |
+
Parameters
|
| 25 |
+
----------
|
| 26 |
+
batch : Batch object
|
| 27 |
+
The object returned by :func:`fetch_species_distributions`
|
| 28 |
+
|
| 29 |
+
Returns
|
| 30 |
+
-------
|
| 31 |
+
(xgrid, ygrid) : 1-D arrays
|
| 32 |
+
The grid corresponding to the values in batch.coverages
|
| 33 |
+
"""
|
| 34 |
+
# x,y coordinates for corner cells
|
| 35 |
+
xmin = batch.x_left_lower_corner + batch.grid_size
|
| 36 |
+
xmax = xmin + (batch.Nx * batch.grid_size)
|
| 37 |
+
ymin = batch.y_left_lower_corner + batch.grid_size
|
| 38 |
+
ymax = ymin + (batch.Ny * batch.grid_size)
|
| 39 |
+
|
| 40 |
+
# x coordinates of the grid cells
|
| 41 |
+
xgrid = np.arange(xmin, xmax, batch.grid_size)
|
| 42 |
+
# y coordinates of the grid cells
|
| 43 |
+
ygrid = np.arange(ymin, ymax, batch.grid_size)
|
| 44 |
+
|
| 45 |
+
return (xgrid, ygrid)
|
| 46 |
+
|
| 47 |
+
|
| 48 |
+
def create_species_bunch(species_name, train, test, coverages, xgrid, ygrid):
|
| 49 |
+
"""Create a bunch with information about a particular organism
|
| 50 |
+
|
| 51 |
+
This will use the test/train record arrays to extract the
|
| 52 |
+
data specific to the given species name.
|
| 53 |
+
"""
|
| 54 |
+
bunch = Bunch(name=" ".join(species_name.split("_")[:2]))
|
| 55 |
+
species_name = species_name.encode("ascii")
|
| 56 |
+
points = dict(test=test, train=train)
|
| 57 |
+
|
| 58 |
+
for label, pts in points.items():
|
| 59 |
+
# choose points associated with the desired species
|
| 60 |
+
pts = pts[pts["species"] == species_name]
|
| 61 |
+
bunch["pts_%s" % label] = pts
|
| 62 |
+
|
| 63 |
+
# determine coverage values for each of the training & testing points
|
| 64 |
+
ix = np.searchsorted(xgrid, pts["dd long"])
|
| 65 |
+
iy = np.searchsorted(ygrid, pts["dd lat"])
|
| 66 |
+
bunch["cov_%s" % label] = coverages[:, -iy, ix].T
|
| 67 |
+
|
| 68 |
+
return bunch
|
| 69 |
+
|
| 70 |
+
|
| 71 |
+
def translate_choice(choice: str) -> Union[str, tuple[str, str]]:
|
| 72 |
+
if choice == "Bradypus variegatus":
|
| 73 |
+
return "bradypus_variegatus_0"
|
| 74 |
+
elif choice == "Microryzomys minutus":
|
| 75 |
+
return "microryzomys_minutus_0"
|
| 76 |
+
else:
|
| 77 |
+
return ("bradypus_variegatus_0", "microryzomys_minutus_0")
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
def plot_species_distribution(
|
| 81 |
+
choice: Union[str, tuple[str, str]]
|
| 82 |
+
):
|
| 83 |
+
"""
|
| 84 |
+
Plot the species distribution.
|
| 85 |
+
"""
|
| 86 |
+
species = translate_choice(choice)
|
| 87 |
+
|
| 88 |
+
t0 = time()
|
| 89 |
+
|
| 90 |
+
# Load the compressed data
|
| 91 |
+
data = fetch_species_distributions()
|
| 92 |
+
|
| 93 |
+
# Set up the data grid
|
| 94 |
+
xgrid, ygrid = construct_grids(data)
|
| 95 |
+
|
| 96 |
+
# The grid in x,y coordinates
|
| 97 |
+
X, Y = np.meshgrid(xgrid, ygrid[::-1])
|
| 98 |
+
|
| 99 |
+
species_bunches = []
|
| 100 |
+
|
| 101 |
+
if isinstance(species, tuple):
|
| 102 |
+
# create a bunch for each species
|
| 103 |
+
BV_bunch = create_species_bunch(
|
| 104 |
+
species[0], data.train, data.test, data.coverages, xgrid, ygrid
|
| 105 |
+
)
|
| 106 |
+
MM_bunch = create_species_bunch(
|
| 107 |
+
species[1], data.train, data.test, data.coverages, xgrid, ygrid
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
species_bunches.extend([BV_bunch, MM_bunch])
|
| 111 |
+
else:
|
| 112 |
+
# create a bunch for the given species
|
| 113 |
+
species_bunch = create_species_bunch(
|
| 114 |
+
species, data.train, data.test, data.coverages, xgrid, ygrid
|
| 115 |
+
)
|
| 116 |
+
species_bunches.append(species_bunch)
|
| 117 |
+
|
| 118 |
+
# background points (grid coordinates) for evaluation
|
| 119 |
+
np.random.seed(13)
|
| 120 |
+
background_points = np.c_[
|
| 121 |
+
np.random.randint(low=0, high=data.Ny, size=10000),
|
| 122 |
+
np.random.randint(low=0, high=data.Nx, size=10000),
|
| 123 |
+
].T
|
| 124 |
+
|
| 125 |
+
# We'll make use of the fact that coverages[6] has measurements at all
|
| 126 |
+
# land points. This will help us decide between land and water.
|
| 127 |
+
land_reference = data.coverages[6]
|
| 128 |
+
|
| 129 |
+
# Fit, predict, and plot for each species.
|
| 130 |
+
for i, species in enumerate(species_bunches):
|
| 131 |
+
print("_" * 80)
|
| 132 |
+
print("Modeling distribution of species '%s'" % species.name)
|
| 133 |
+
|
| 134 |
+
# Standardize features
|
| 135 |
+
mean = species.cov_train.mean(axis=0)
|
| 136 |
+
std = species.cov_train.std(axis=0)
|
| 137 |
+
train_cover_std = (species.cov_train - mean) / std
|
| 138 |
+
|
| 139 |
+
# Fit OneClassSVM
|
| 140 |
+
print(" - fit OneClassSVM ... ", end="")
|
| 141 |
+
clf = svm.OneClassSVM(nu=0.1, kernel="rbf", gamma=0.5)
|
| 142 |
+
clf.fit(train_cover_std)
|
| 143 |
+
print("done.")
|
| 144 |
+
|
| 145 |
+
# Plot map of South America
|
| 146 |
+
plt.subplot(1, len(species_bunches), i + 1)
|
| 147 |
+
if basemap:
|
| 148 |
+
print(" - plot coastlines using basemap")
|
| 149 |
+
m = Basemap(
|
| 150 |
+
projection="cyl",
|
| 151 |
+
llcrnrlat=Y.min(),
|
| 152 |
+
urcrnrlat=Y.max(),
|
| 153 |
+
llcrnrlon=X.min(),
|
| 154 |
+
urcrnrlon=X.max(),
|
| 155 |
+
resolution="c",
|
| 156 |
+
)
|
| 157 |
+
m.drawcoastlines()
|
| 158 |
+
m.drawcountries()
|
| 159 |
+
else:
|
| 160 |
+
print(" - plot coastlines from coverage")
|
| 161 |
+
plt.contour(
|
| 162 |
+
X, Y, land_reference, levels=[-9998], colors="k", linestyles="solid"
|
| 163 |
+
)
|
| 164 |
+
plt.xticks([])
|
| 165 |
+
plt.yticks([])
|
| 166 |
+
|
| 167 |
+
print(" - predict species distribution")
|
| 168 |
+
|
| 169 |
+
# Predict species distribution using the training data
|
| 170 |
+
Z = np.ones((data.Ny, data.Nx), dtype=np.float64)
|
| 171 |
+
|
| 172 |
+
# We'll predict only for the land points.
|
| 173 |
+
idx = np.where(land_reference > -9999)
|
| 174 |
+
coverages_land = data.coverages[:, idx[0], idx[1]].T
|
| 175 |
+
|
| 176 |
+
pred = clf.decision_function((coverages_land - mean) / std)
|
| 177 |
+
Z *= pred.min()
|
| 178 |
+
Z[idx[0], idx[1]] = pred
|
| 179 |
+
|
| 180 |
+
levels = np.linspace(Z.min(), Z.max(), 25)
|
| 181 |
+
Z[land_reference == -9999] = -9999
|
| 182 |
+
|
| 183 |
+
# plot contours of the prediction
|
| 184 |
+
plt.contourf(X, Y, Z, levels=levels, cmap="Reds")
|
| 185 |
+
plt.colorbar(format="%.2f")
|
| 186 |
+
|
| 187 |
+
# scatter training/testing points
|
| 188 |
+
plt.scatter(
|
| 189 |
+
species.pts_train["dd long"],
|
| 190 |
+
species.pts_train["dd lat"],
|
| 191 |
+
s=2**2,
|
| 192 |
+
c="black",
|
| 193 |
+
marker="^",
|
| 194 |
+
label="train",
|
| 195 |
+
)
|
| 196 |
+
plt.scatter(
|
| 197 |
+
species.pts_test["dd long"],
|
| 198 |
+
species.pts_test["dd lat"],
|
| 199 |
+
s=2**2,
|
| 200 |
+
c="black",
|
| 201 |
+
marker="x",
|
| 202 |
+
label="test",
|
| 203 |
+
)
|
| 204 |
+
plt.legend()
|
| 205 |
+
plt.title(species.name)
|
| 206 |
+
plt.axis("equal")
|
| 207 |
+
|
| 208 |
+
# Compute AUC with regards to background points
|
| 209 |
+
pred_background = Z[background_points[0], background_points[1]]
|
| 210 |
+
pred_test = clf.decision_function((species.cov_test - mean) / std)
|
| 211 |
+
scores = np.r_[pred_test, pred_background]
|
| 212 |
+
y = np.r_[np.ones(pred_test.shape), np.zeros(pred_background.shape)]
|
| 213 |
+
fpr, tpr, thresholds = metrics.roc_curve(y, scores)
|
| 214 |
+
roc_auc = metrics.auc(fpr, tpr)
|
| 215 |
+
plt.text(-35, -70, "AUC: %.3f" % roc_auc, ha="right")
|
| 216 |
+
print("\n Area under the ROC curve : %f" % roc_auc)
|
| 217 |
+
|
| 218 |
+
print("\ntime elapsed: %.2fs" % (time() - t0))
|
| 219 |
+
return plt
|
| 220 |
+
|
| 221 |
+
|
| 222 |
+
iface = gr.Interface(
|
| 223 |
+
fn=plot_species_distribution,
|
| 224 |
+
inputs=gr.Radio(choices=["Bradypus variegatus","Microryzomys minutus", "Both"],
|
| 225 |
+
value="Bradypus variegatus",
|
| 226 |
+
label="Species"),
|
| 227 |
+
outputs=gr.Plot(label="Distribution Map"),
|
| 228 |
+
title="Species Distribution Map",
|
| 229 |
+
description="""This app predicts the distribution of a species using a OneClassSVM. Following [this tutorial](https://scikit-learn.org/stable/auto_examples/applications/plot_species_distribution_modeling.html#sphx-glr-auto-examples-applications-plot-species-distribution-modeling-py) from sklearn""",
|
| 230 |
+
examples=[
|
| 231 |
+
["Bradypus variegatus"],
|
| 232 |
+
["Microryzomys minutus"]])
|
| 233 |
+
|
| 234 |
+
iface.launch()
|
requirements.txt
ADDED
|
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
|
|
|
| 1 |
+
scikit-learn
|
| 2 |
+
basemap
|