Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,61 +1,83 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
-
from transformers import AutoModelForCausalLM, AutoTokenizer
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
|
|
|
| 5 |
|
| 6 |
# --- Configuration ---
|
| 7 |
base_model_id = "Qwen/Qwen-1_8B-Chat"
|
| 8 |
lora_adapter_id = "jinv2/qwen-1_8b-hemiplegia-lora" # Your HF Model ID
|
| 9 |
-
device = "cuda" if torch.cuda.is_available() else "cpu"
|
|
|
|
| 10 |
print(f"Using device: {device}")
|
| 11 |
|
| 12 |
# --- Load Model and Tokenizer ---
|
| 13 |
print("Loading tokenizer...")
|
| 14 |
try:
|
|
|
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained(lora_adapter_id, trust_remote_code=True)
|
| 16 |
print(f"Successfully loaded tokenizer from {lora_adapter_id}.")
|
| 17 |
-
except Exception:
|
| 18 |
-
print(f"Could not load tokenizer from {lora_adapter_id}, falling back to {base_model_id}.")
|
| 19 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
|
| 20 |
|
|
|
|
| 21 |
if tokenizer.pad_token_id is None:
|
| 22 |
if tokenizer.eos_token_id is not None:
|
| 23 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 24 |
-
|
| 25 |
-
tokenizer.pad_token_id
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
tokenizer.padding_side = "left" # Important for generation
|
| 28 |
|
| 29 |
-
print("Loading base model
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
base_model = AutoModelForCausalLM.from_pretrained(
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
|
| 42 |
print(f"Loading LoRA adapter: {lora_adapter_id}...")
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
|
| 47 |
-
model = model.to(device)
|
| 48 |
-
print(
|
|
|
|
|
|
|
|
|
|
| 49 |
|
| 50 |
|
| 51 |
# --- Prediction Function ---
|
| 52 |
def get_response(user_query):
|
| 53 |
system_prompt_content = "你是一个专注于偏瘫、脑血栓、半身不遂领域的医疗问答助手。"
|
| 54 |
|
| 55 |
-
# Construct prompt using Qwen's ChatML format
|
| 56 |
prompt = f"<|im_start|>system\n{system_prompt_content}<|im_end|>\n<|im_start|>user\n{user_query}<|im_end|>\n<|im_start|>assistant\n"
|
| 57 |
|
| 58 |
-
inputs
|
|
|
|
| 59 |
|
| 60 |
eos_token_ids_list = []
|
| 61 |
if isinstance(tokenizer.eos_token_id, int):
|
|
@@ -65,25 +87,31 @@ def get_response(user_query):
|
|
| 65 |
if im_end_token_id not in eos_token_ids_list:
|
| 66 |
eos_token_ids_list.append(im_end_token_id)
|
| 67 |
except KeyError: pass
|
| 68 |
-
|
| 69 |
-
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
| 73 |
-
|
| 74 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 75 |
|
| 76 |
-
print(f"Generating response for query: '{user_query}'")
|
| 77 |
-
with torch.no_grad():
|
| 78 |
outputs = model.generate(
|
| 79 |
**inputs,
|
| 80 |
max_new_tokens=150,
|
| 81 |
pad_token_id=tokenizer.pad_token_id,
|
| 82 |
-
eos_token_id=eos_token_ids_list if eos_token_ids_list else None,
|
| 83 |
temperature=0.7,
|
| 84 |
top_p=0.9,
|
| 85 |
do_sample=True,
|
| 86 |
-
num_beams=1
|
| 87 |
)
|
| 88 |
|
| 89 |
response_text = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
|
@@ -95,15 +123,18 @@ iface = gr.Interface(
|
|
| 95 |
fn=get_response,
|
| 96 |
inputs=gr.Textbox(lines=3, placeholder="请输入您关于偏瘫、脑血栓或半身不遂的问题...", label="您的问题 (Your Question)"),
|
| 97 |
outputs=gr.Textbox(lines=5, label="模型回答 (Model Response)"),
|
| 98 |
-
title="偏瘫脑血栓问答助手 (
|
| 99 |
-
description=
|
|
|
|
|
|
|
|
|
|
| 100 |
examples=[
|
| 101 |
["偏瘫患者的早期康复锻炼有哪些?"],
|
| 102 |
["什么是脑血栓?"],
|
| 103 |
["中风后如何进行语言恢复训练?"]
|
| 104 |
],
|
| 105 |
-
allow_flagging="never"
|
| 106 |
)
|
| 107 |
|
| 108 |
if __name__ == "__main__":
|
| 109 |
-
iface.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
+
from transformers import AutoModelForCausalLM, AutoTokenizer # Removed BitsAndBytesConfig as we are not quantizing for CPU
|
| 3 |
from peft import PeftModel
|
| 4 |
import torch
|
| 5 |
+
import os # Ensure os is imported for potential path joining if needed
|
| 6 |
|
| 7 |
# --- Configuration ---
|
| 8 |
base_model_id = "Qwen/Qwen-1_8B-Chat"
|
| 9 |
lora_adapter_id = "jinv2/qwen-1_8b-hemiplegia-lora" # Your HF Model ID
|
| 10 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu" # Will always be "cpu" on free tier
|
| 11 |
+
device = "cpu" # Explicitly set to CPU for this configuration
|
| 12 |
print(f"Using device: {device}")
|
| 13 |
|
| 14 |
# --- Load Model and Tokenizer ---
|
| 15 |
print("Loading tokenizer...")
|
| 16 |
try:
|
| 17 |
+
# Try loading tokenizer from your LoRA repo first, as it might contain specific settings
|
| 18 |
tokenizer = AutoTokenizer.from_pretrained(lora_adapter_id, trust_remote_code=True)
|
| 19 |
print(f"Successfully loaded tokenizer from {lora_adapter_id}.")
|
| 20 |
+
except Exception as e_lora_tok:
|
| 21 |
+
print(f"Could not load tokenizer from {lora_adapter_id} (Error: {e_lora_tok}), falling back to {base_model_id}.")
|
| 22 |
tokenizer = AutoTokenizer.from_pretrained(base_model_id, trust_remote_code=True)
|
| 23 |
|
| 24 |
+
# Set pad_token if not already set
|
| 25 |
if tokenizer.pad_token_id is None:
|
| 26 |
if tokenizer.eos_token_id is not None:
|
| 27 |
tokenizer.pad_token_id = tokenizer.eos_token_id
|
| 28 |
+
tokenizer.pad_token = tokenizer.eos_token
|
| 29 |
+
print(f"Set tokenizer.pad_token_id to eos_token_id: {tokenizer.pad_token_id}")
|
| 30 |
+
else:
|
| 31 |
+
# Fallback for Qwen, ensure this ID is correct for your Qwen version
|
| 32 |
+
try:
|
| 33 |
+
qwen_eos_id = tokenizer.convert_tokens_to_ids("<|endoftext|>")
|
| 34 |
+
tokenizer.pad_token_id = qwen_eos_id
|
| 35 |
+
tokenizer.pad_token = "<|endoftext|>"
|
| 36 |
+
print(f"Set tokenizer.pad_token_id to ID of '<|endoftext|>: {tokenizer.pad_token_id}")
|
| 37 |
+
except KeyError:
|
| 38 |
+
tokenizer.pad_token_id = 0 # Absolute fallback, very risky
|
| 39 |
+
tokenizer.pad_token = tokenizer.decode([0])
|
| 40 |
+
print(f"CRITICAL WARNING: Could not set pad_token_id reliably. Set to 0 ('{tokenizer.pad_token}').")
|
| 41 |
|
| 42 |
tokenizer.padding_side = "left" # Important for generation
|
| 43 |
|
| 44 |
+
print("Loading base model (NO QUANTIZATION as running on CPU)...")
|
| 45 |
+
# IMPORTANT: For CPU, we cannot use bitsandbytes 4-bit quantization.
|
| 46 |
+
# We load the model in its original precision (or try float16/bfloat16 if memory allows and CPU supports).
|
| 47 |
+
# This will be much slower and more memory-intensive.
|
| 48 |
+
try:
|
| 49 |
+
base_model = AutoModelForCausalLM.from_pretrained(
|
| 50 |
+
base_model_id,
|
| 51 |
+
trust_remote_code=True,
|
| 52 |
+
torch_dtype=torch.float32, # Use float32 for CPU for max compatibility, bfloat16 might work on some newer CPUs
|
| 53 |
+
# device_map="auto" will likely map to CPU. Can be explicit: device_map="cpu"
|
| 54 |
+
device_map={"":device} # Ensure model parts are on the correct device
|
| 55 |
+
)
|
| 56 |
+
print("Base model loaded.")
|
| 57 |
+
except Exception as e_load_model:
|
| 58 |
+
print(f"Error loading base model: {e_load_model}")
|
| 59 |
+
raise # Re-raise the exception to stop the app if model loading fails
|
| 60 |
|
| 61 |
print(f"Loading LoRA adapter: {lora_adapter_id}...")
|
| 62 |
+
try:
|
| 63 |
+
# For CPU, PEFT should still work. The model should be on the CPU before applying adapter.
|
| 64 |
+
model = PeftModel.from_pretrained(base_model, lora_adapter_id)
|
| 65 |
+
model.eval() # Set to evaluation mode
|
| 66 |
+
model = model.to(device) # Ensure the final PEFT model is on the CPU
|
| 67 |
+
print("LoRA adapter loaded and model is on CPU, ready for inference.")
|
| 68 |
+
except Exception as e_load_adapter:
|
| 69 |
+
print(f"Error loading LoRA adapter: {e_load_adapter}")
|
| 70 |
+
raise
|
| 71 |
|
| 72 |
|
| 73 |
# --- Prediction Function ---
|
| 74 |
def get_response(user_query):
|
| 75 |
system_prompt_content = "你是一个专注于偏瘫、脑血栓、半身不遂领域的医疗问答助手。"
|
| 76 |
|
|
|
|
| 77 |
prompt = f"<|im_start|>system\n{system_prompt_content}<|im_end|>\n<|im_start|>user\n{user_query}<|im_end|>\n<|im_start|>assistant\n"
|
| 78 |
|
| 79 |
+
# Ensure inputs are on the same device as the model
|
| 80 |
+
inputs = tokenizer(prompt, return_tensors="pt", padding=True, truncation=True, max_length=512-150).to(model.device)
|
| 81 |
|
| 82 |
eos_token_ids_list = []
|
| 83 |
if isinstance(tokenizer.eos_token_id, int):
|
|
|
|
| 87 |
if im_end_token_id not in eos_token_ids_list:
|
| 88 |
eos_token_ids_list.append(im_end_token_id)
|
| 89 |
except KeyError: pass
|
| 90 |
+
|
| 91 |
+
# Fallback if eos_token_ids_list is still empty
|
| 92 |
+
if not eos_token_ids_list:
|
| 93 |
+
if tokenizer.eos_token_id is not None:
|
| 94 |
+
eos_token_ids_list = [tokenizer.eos_token_id]
|
| 95 |
+
else:
|
| 96 |
+
print("Warning: EOS token ID list is empty and eos_token_id is None. Generation might not stop correctly.")
|
| 97 |
+
# Attempt to use a known Qwen EOS ID if possible, otherwise generation might be problematic.
|
| 98 |
+
try:
|
| 99 |
+
eos_token_ids_list = [tokenizer.convert_tokens_to_ids("<|endoftext|>")]
|
| 100 |
+
except KeyError:
|
| 101 |
+
eos_token_ids_list = [tokenizer.vocab_size - 1 if tokenizer.vocab_size else 0] # Very risky fallback
|
| 102 |
+
|
| 103 |
|
| 104 |
+
print(f"Generating response for query: '{user_query}' on device: {model.device}")
|
| 105 |
+
with torch.no_grad(): # Inference doesn't need gradient calculation
|
| 106 |
outputs = model.generate(
|
| 107 |
**inputs,
|
| 108 |
max_new_tokens=150,
|
| 109 |
pad_token_id=tokenizer.pad_token_id,
|
| 110 |
+
eos_token_id=eos_token_ids_list if eos_token_ids_list else None,
|
| 111 |
temperature=0.7,
|
| 112 |
top_p=0.9,
|
| 113 |
do_sample=True,
|
| 114 |
+
num_beams=1
|
| 115 |
)
|
| 116 |
|
| 117 |
response_text = tokenizer.decode(outputs[0][inputs.input_ids.shape[1]:], skip_special_tokens=True)
|
|
|
|
| 123 |
fn=get_response,
|
| 124 |
inputs=gr.Textbox(lines=3, placeholder="请输入您关于偏瘫、脑血栓或半身不遂的问题...", label="您的问题 (Your Question)"),
|
| 125 |
outputs=gr.Textbox(lines=5, label="模型回答 (Model Response)"),
|
| 126 |
+
title="偏瘫脑血栓问答助手 (CPU Version - Expect Slow Response)",
|
| 127 |
+
description=(
|
| 128 |
+
"由 Qwen-1.8B-Chat LoRA 微调得到的模型 (jinv2/qwen-1_8b-hemiplegia-lora)。与天算AI相关。\n"
|
| 129 |
+
"**重要:此版本运行在 CPU 上,无量化,响应会非常慢。医疗建议请咨询专业医生。**"
|
| 130 |
+
),
|
| 131 |
examples=[
|
| 132 |
["偏瘫患者的早期康复锻炼有哪些?"],
|
| 133 |
["什么是脑血栓?"],
|
| 134 |
["中风后如何进行语言恢复训练?"]
|
| 135 |
],
|
| 136 |
+
allow_flagging="never"
|
| 137 |
)
|
| 138 |
|
| 139 |
if __name__ == "__main__":
|
| 140 |
+
iface.launch() # debug=True can be helpful for local testing but not for Spaces deployment
|