[email protected]
		
	commited on
		
		
					Commit 
							
							·
						
						287a603
	
1
								Parent(s):
							
							166428d
								
support openai api
Browse files- .gitignore +2 -0
 - README.md +16 -3
 - package.json +1 -0
 - src/app/queries/predict.ts +46 -1
 
    	
        .gitignore
    CHANGED
    
    | 
         @@ -33,3 +33,5 @@ yarn-error.log* 
     | 
|
| 33 | 
         
             
            # typescript
         
     | 
| 34 | 
         
             
            *.tsbuildinfo
         
     | 
| 35 | 
         
             
            next-env.d.ts
         
     | 
| 
         | 
|
| 
         | 
| 
         | 
|
| 33 | 
         
             
            # typescript
         
     | 
| 34 | 
         
             
            *.tsbuildinfo
         
     | 
| 35 | 
         
             
            next-env.d.ts
         
     | 
| 36 | 
         
            +
             
     | 
| 37 | 
         
            +
            pnpm-lock.yaml
         
     | 
    	
        README.md
    CHANGED
    
    | 
         @@ -81,14 +81,27 @@ HF_INFERENCE_ENDPOINT_URL="path to your inference endpoint url" 
     | 
|
| 81 | 
         | 
| 82 | 
         
             
            To run this kind of LLM locally, you can use [TGI](https://github.com/huggingface/text-generation-inference) (Please read [this post](https://github.com/huggingface/text-generation-inference/issues/726) for more information about the licensing).
         
     | 
| 83 | 
         | 
| 84 | 
         
            -
            ### Option 3:  
     | 
| 85 | 
         | 
| 86 | 
         
            -
             
     | 
| 87 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 88 | 
         | 
| 89 | 
         
             
            ### Notes
         
     | 
| 90 | 
         | 
| 91 | 
         
            -
            It is possible that I modify the AI Comic Factory to make it easier in the future (eg. add support for  
     | 
| 92 | 
         | 
| 93 | 
         
             
            ## The Rendering API
         
     | 
| 94 | 
         | 
| 
         | 
|
| 81 | 
         | 
| 82 | 
         
             
            To run this kind of LLM locally, you can use [TGI](https://github.com/huggingface/text-generation-inference) (Please read [this post](https://github.com/huggingface/text-generation-inference/issues/726) for more information about the licensing).
         
     | 
| 83 | 
         | 
| 84 | 
         
            +
            ### Option 3: Use an OpenAI API Key
         
     | 
| 85 | 
         | 
| 86 | 
         
            +
            This is a new option added recently, where you can use OpenAI API with an OpenAI API Key.
         
     | 
| 87 | 
         | 
| 88 | 
         
            +
            To activate it, create a `.env.local` configuration file:
         
     | 
| 89 | 
         
            +
             
     | 
| 90 | 
         
            +
            ```bash
         
     | 
| 91 | 
         
            +
            LLM_ENGINE="OPENAI"
         
     | 
| 92 | 
         
            +
            # default openai api base url is: https://api.openai.com/v1
         
     | 
| 93 | 
         
            +
            OPENAI_API_BASE_URL="Your OpenAI API Base URL"
         
     | 
| 94 | 
         
            +
            OPENAI_API_KEY="Your OpenAI API Key"
         
     | 
| 95 | 
         
            +
            OPENAI_API_MODEL="gpt-3.5-turbo"
         
     | 
| 96 | 
         
            +
            ```
         
     | 
| 97 | 
         
            +
             
     | 
| 98 | 
         
            +
            ### Option 4: Fork and modify the code to use a different LLM system
         
     | 
| 99 | 
         
            +
             
     | 
| 100 | 
         
            +
            Another option could be to disable the LLM completely and replace it with another LLM protocol and/or provider (eg. Claude, Replicate), or a human-generated story instead (by returning mock or static data).
         
     | 
| 101 | 
         | 
| 102 | 
         
             
            ### Notes
         
     | 
| 103 | 
         | 
| 104 | 
         
            +
            It is possible that I modify the AI Comic Factory to make it easier in the future (eg. add support for Claude or Replicate)
         
     | 
| 105 | 
         | 
| 106 | 
         
             
            ## The Rendering API
         
     | 
| 107 | 
         | 
    	
        package.json
    CHANGED
    
    | 
         @@ -43,6 +43,7 @@ 
     | 
|
| 43 | 
         
             
                "html2canvas": "^1.4.1",
         
     | 
| 44 | 
         
             
                "lucide-react": "^0.260.0",
         
     | 
| 45 | 
         
             
                "next": "13.4.10",
         
     | 
| 
         | 
|
| 46 | 
         
             
                "pick": "^0.0.1",
         
     | 
| 47 | 
         
             
                "postcss": "8.4.26",
         
     | 
| 48 | 
         
             
                "react": "18.2.0",
         
     | 
| 
         | 
|
| 43 | 
         
             
                "html2canvas": "^1.4.1",
         
     | 
| 44 | 
         
             
                "lucide-react": "^0.260.0",
         
     | 
| 45 | 
         
             
                "next": "13.4.10",
         
     | 
| 46 | 
         
            +
                "openai": "^4.10.0",
         
     | 
| 47 | 
         
             
                "pick": "^0.0.1",
         
     | 
| 48 | 
         
             
                "postcss": "8.4.26",
         
     | 
| 49 | 
         
             
                "react": "18.2.0",
         
     | 
    	
        src/app/queries/predict.ts
    CHANGED
    
    | 
         @@ -1,8 +1,11 @@ 
     | 
|
| 1 | 
         
             
            "use server"
         
     | 
| 2 | 
         | 
| 3 | 
         
            -
            import { LLMEngine } from "@/types"
         
     | 
| 4 | 
         
             
            import { HfInference, HfInferenceEndpoint } from "@huggingface/inference"
         
     | 
| 5 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 6 | 
         
             
            const hf = new HfInference(process.env.HF_API_TOKEN)
         
     | 
| 7 | 
         | 
| 8 | 
         | 
| 
         @@ -10,6 +13,7 @@ const hf = new HfInference(process.env.HF_API_TOKEN) 
     | 
|
| 10 | 
         
             
            const llmEngine = `${process.env.LLM_ENGINE || ""}` as LLMEngine
         
     | 
| 11 | 
         
             
            const inferenceEndpoint = `${process.env.HF_INFERENCE_ENDPOINT_URL || ""}`
         
     | 
| 12 | 
         
             
            const inferenceModel = `${process.env.HF_INFERENCE_API_MODEL || ""}`
         
     | 
| 
         | 
|
| 13 | 
         | 
| 14 | 
         
             
            let hfie: HfInferenceEndpoint
         
     | 
| 15 | 
         | 
| 
         @@ -34,6 +38,16 @@ switch (llmEngine) { 
     | 
|
| 34 | 
         
             
                  throw new Error(error)
         
     | 
| 35 | 
         
             
                }
         
     | 
| 36 | 
         
             
                break;
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 37 | 
         | 
| 38 | 
         
             
              default:
         
     | 
| 39 | 
         
             
                const error = "No Inference Endpoint URL or Inference API Model defined"
         
     | 
| 
         @@ -45,6 +59,10 @@ export async function predict(inputs: string) { 
     | 
|
| 45 | 
         | 
| 46 | 
         
             
              console.log(`predict: `, inputs)
         
     | 
| 47 | 
         | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 48 | 
         
             
              const api = llmEngine ==="INFERENCE_ENDPOINT" ? hfie : hf
         
     | 
| 49 | 
         | 
| 50 | 
         
             
              let instructions = ""
         
     | 
| 
         @@ -92,4 +110,31 @@ export async function predict(inputs: string) { 
     | 
|
| 92 | 
         
             
                .replaceAll("<|assistant|>", "")
         
     | 
| 93 | 
         
             
                .replaceAll('""', '"')
         
     | 
| 94 | 
         
             
              )
         
     | 
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 
         | 
|
| 95 | 
         
             
            }
         
     | 
| 
         | 
|
| 1 | 
         
             
            "use server"
         
     | 
| 2 | 
         | 
| 
         | 
|
| 3 | 
         
             
            import { HfInference, HfInferenceEndpoint } from "@huggingface/inference"
         
     | 
| 4 | 
         | 
| 5 | 
         
            +
            import type { ChatCompletionMessage } from "openai/resources/chat"
         
     | 
| 6 | 
         
            +
            import { LLMEngine } from "@/types"
         
     | 
| 7 | 
         
            +
            import OpenAI from "openai"
         
     | 
| 8 | 
         
            +
             
     | 
| 9 | 
         
             
            const hf = new HfInference(process.env.HF_API_TOKEN)
         
     | 
| 10 | 
         | 
| 11 | 
         | 
| 
         | 
|
| 13 | 
         
             
            const llmEngine = `${process.env.LLM_ENGINE || ""}` as LLMEngine
         
     | 
| 14 | 
         
             
            const inferenceEndpoint = `${process.env.HF_INFERENCE_ENDPOINT_URL || ""}`
         
     | 
| 15 | 
         
             
            const inferenceModel = `${process.env.HF_INFERENCE_API_MODEL || ""}`
         
     | 
| 16 | 
         
            +
            const openaiApiKey = `${process.env.OPENAI_API_KEY || ""}`
         
     | 
| 17 | 
         | 
| 18 | 
         
             
            let hfie: HfInferenceEndpoint
         
     | 
| 19 | 
         | 
| 
         | 
|
| 38 | 
         
             
                  throw new Error(error)
         
     | 
| 39 | 
         
             
                }
         
     | 
| 40 | 
         
             
                break;
         
     | 
| 41 | 
         
            +
             
     | 
| 42 | 
         
            +
              case "OPENAI":
         
     | 
| 43 | 
         
            +
                if (openaiApiKey) {
         
     | 
| 44 | 
         
            +
                  console.log("Using an OpenAI API Key")
         
     | 
| 45 | 
         
            +
                } else {
         
     | 
| 46 | 
         
            +
                  const error = "No OpenAI API key defined"
         
     | 
| 47 | 
         
            +
                  console.error(error)
         
     | 
| 48 | 
         
            +
                  throw new Error(error)
         
     | 
| 49 | 
         
            +
                }
         
     | 
| 50 | 
         
            +
                break;
         
     | 
| 51 | 
         | 
| 52 | 
         
             
              default:
         
     | 
| 53 | 
         
             
                const error = "No Inference Endpoint URL or Inference API Model defined"
         
     | 
| 
         | 
|
| 59 | 
         | 
| 60 | 
         
             
              console.log(`predict: `, inputs)
         
     | 
| 61 | 
         | 
| 62 | 
         
            +
              if (llmEngine==="OPENAI") {
         
     | 
| 63 | 
         
            +
                return predictWithOpenAI(inputs)
         
     | 
| 64 | 
         
            +
              } 
         
     | 
| 65 | 
         
            +
              
         
     | 
| 66 | 
         
             
              const api = llmEngine ==="INFERENCE_ENDPOINT" ? hfie : hf
         
     | 
| 67 | 
         | 
| 68 | 
         
             
              let instructions = ""
         
     | 
| 
         | 
|
| 110 | 
         
             
                .replaceAll("<|assistant|>", "")
         
     | 
| 111 | 
         
             
                .replaceAll('""', '"')
         
     | 
| 112 | 
         
             
              )
         
     | 
| 113 | 
         
            +
            }
         
     | 
| 114 | 
         
            +
             
     | 
| 115 | 
         
            +
            async function predictWithOpenAI(inputs: string) {
         
     | 
| 116 | 
         
            +
              const openaiApiBaseUrl = `${process.env.OPENAI_API_BASE_URL || "https://api.openai.com/v1"}`
         
     | 
| 117 | 
         
            +
              const openaiApiModel = `${process.env.OPENAI_API_MODEL || "gpt-3.5-turbo"}`
         
     | 
| 118 | 
         
            +
              
         
     | 
| 119 | 
         
            +
              const openai = new OpenAI({
         
     | 
| 120 | 
         
            +
                apiKey: openaiApiKey,
         
     | 
| 121 | 
         
            +
                baseURL: openaiApiBaseUrl,
         
     | 
| 122 | 
         
            +
              })
         
     | 
| 123 | 
         
            +
             
     | 
| 124 | 
         
            +
              const messages: ChatCompletionMessage[] = [
         
     | 
| 125 | 
         
            +
                { role: "system", content: inputs },
         
     | 
| 126 | 
         
            +
              ]
         
     | 
| 127 | 
         
            +
             
     | 
| 128 | 
         
            +
              try {
         
     | 
| 129 | 
         
            +
                const res = await openai.chat.completions.create({
         
     | 
| 130 | 
         
            +
                  messages: messages,
         
     | 
| 131 | 
         
            +
                  stream: false,
         
     | 
| 132 | 
         
            +
                  model: openaiApiModel,
         
     | 
| 133 | 
         
            +
                  temperature: 0.8
         
     | 
| 134 | 
         
            +
                })
         
     | 
| 135 | 
         
            +
             
     | 
| 136 | 
         
            +
                return res.choices[0].message.content
         
     | 
| 137 | 
         
            +
              } catch (err) {
         
     | 
| 138 | 
         
            +
                console.error(`error during generation: ${err}`)
         
     | 
| 139 | 
         
            +
              }
         
     | 
| 140 | 
         
             
            }
         
     |