File size: 6,127 Bytes
d369456 dd1b723 d369456 dd1b723 d369456 dd1b723 d369456 dd1b723 d369456 dd1b723 d369456 dd1b723 d369456 dd1b723 d369456 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
// index.js
import { pipeline } from 'https://cdn.jsdelivr.net/npm/@huggingface/[email protected]';
// DOM elements
const taskSelect = document.getElementById('task-select');
const deviceSelect = document.getElementById('device-select');
const inputText = document.getElementById('input-text');
const runBtn = document.getElementById('run-btn');
const outputContainer = document.getElementById('output');
// Model mapping
const modelMap = {
'text-classification': 'distilbert-base-uncased-finetuned-sst-2-english',
'sentiment-analysis': 'distilbert-base-uncased-finetuned-sst-2-english',
'question-answering': 'deepset/roberta-base-squad2',
'text-generation': 'gpt2',
'translation': 't5-small'
};
// Initialize pipeline
let currentPipeline = null;
let currentTask = null;
// Check WebGPU support
function checkWebGPUSupport() {
return 'gpu' in navigator;
}
// Update device options based on support
if (!checkWebGPUSupport()) {
const option = document.querySelector('#device-select option[value="webgpu"]');
option.disabled = true;
option.textContent = 'GPU (WebGPU) - Not Supported';
deviceSelect.value = 'cpu';
}
// Function to create pipeline
async function createPipeline(task, device) {
const modelName = modelMap[task];
// Show loading state
outputContainer.innerHTML = '<p class="loading">Loading model...</p>';
try {
// Create pipeline with selected device
if (device === 'webgpu' && checkWebGPUSupport()) {
return await pipeline(task, modelName, { device: 'webgpu' });
} else {
return await pipeline(task, modelName);
}
} catch (error) {
console.error('Error creating pipeline:', error);
outputContainer.innerHTML = `<p class="error">Error loading model: ${error.message}</p>`;
return null;
}
}
// Function to run the model
async function runModel() {
const task = taskSelect.value;
const device = deviceSelect.value;
const text = inputText.value.trim();
if (!text) {
outputContainer.innerHTML = '<p class="error">Please enter some text to process.</p>';
return;
}
// Check if pipeline needs to be recreated
if (!currentPipeline || currentTask !== task) {
currentPipeline = await createPipeline(task, device);
currentTask = task;
}
if (!currentPipeline) {
return;
}
// Show processing state
outputContainer.innerHTML = '<p class="loading">Processing...</p>';
try {
let result;
switch (task) {
case 'text-classification':
case 'sentiment-analysis':
result = await currentPipeline(text);
break;
case 'question-answering':
// For QA, we need context and question
const [context, question] = text.split('\n').length > 1
? [text.split('\n').slice(0, -1).join(' '), text.split('\n').pop()]
: ['The sky is blue.', text];
result = await currentPipeline(question, context);
break;
case 'text-generation':
result = await currentPipeline(text, { max_new_tokens: 50 });
break;
case 'translation':
result = await currentPipeline(text, {
src_lang: 'en',
tgt_lang: 'de'
});
break;
default:
throw new Error('Unsupported task');
}
// Display results
displayResults(result, task);
} catch (error) {
console.error('Error running model:', error);
outputContainer.innerHTML = `<p class="error">Error processing text: ${error.message}</p>`;
}
}
// Function to display results based on task
function displayResults(result, task) {
let content = '';
switch (task) {
case 'text-classification':
case 'sentiment-analysis':
content = `
<h4>Classification Results:</h4>
<ul>
${result.map(item => `
<li>
<strong>${item.label}:</strong> ${(item.score * 100).toFixed(2)}%
</li>
`).join('')}
</ul>
`;
break;
case 'question-answering':
content = `
<h4>Answer:</h4>
<p>${result.answer}</p>
<p><strong>Confidence:</strong> ${(result.score * 100).toFixed(2)}%</p>
`;
break;
case 'text-generation':
content = `
<h4>Generated Text:</h4>
<p>${result[0].generated_text}</p>
`;
break;
case 'translation':
content = `
<h4>Translation:</h4>
<p>${result[0].translation_text}</p>
`;
break;
default:
content = `<pre>${JSON.stringify(result, null, 2)}</pre>`;
}
outputContainer.innerHTML = content;
}
// Event listeners
runBtn.addEventListener('click', runModel);
// Handle task change
taskSelect.addEventListener('change', () => {
// Reset pipeline when task changes
currentPipeline = null;
currentTask = null;
// Update placeholder text based on task
switch (taskSelect.value) {
case 'question-answering':
inputText.placeholder = "Enter context and question separated by a new line\nContext: The sky is blue.\nQuestion: What color is the sky?";
break;
case 'text-generation':
inputText.placeholder = "Enter a prompt to generate text from...";
break;
case 'translation':
inputText.placeholder = "Enter text to translate from English to German...";
break;
default:
inputText.placeholder = "Enter your text here...";
}
});
// Initialize with default task
taskSelect.dispatchEvent(new Event('change')); |